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COMPUTATIONAL ANALYSIS OF THE DEFORMATION BEHAVIOR OF 4D-PRINTED LIQUID
CRYSTAL ELASTOMERS UNDER CHANGE OF TEMPERATURE

This paper focuses on an FE simulation of Liquid Crystal Elastomers (LCE). For this purpose, a new method is proposed based on the combination of
nonlinear deformation analysis based on a St. Venant — Kirchhoff law, i.e., a physically linear but geometrically nonlinear stress-strain relationship.
The deformation gradient is decomposed multiplicatively into elastic, (classical) thermal, and phase transformation parts. For the transformation part a
novel representation is chosen based on an orientation parameter within a distribution function for the mesogens. This parameter can be linked to tem-
perature. The stiffness tensor in the St. Venant — Kirchhoff law as well as the tensor of thermal expansion (for the thermal part of the deformation gra-
dient) are obtained from Mori-Tanaka homogenization schemes. It is shown that classical thermal expansion with positive expansion coefficients and
realistic values does not contribute much to the total large deformations. The mayor contribution comes from phase transformation. It is, therefore,
misleading to model the deformation of LCEs during temperature change by classical thermal expansion, although exactly this is done in the literature
by a trick—namely, using negative anisotropic thermal expansion coefficients.
Key words: 4D printing, liquid crystal elastomer, FE simulation, Mori-Tanaka scheme, distribution function, shape function.

JI. IIEK, E. H. BUIbYEBCbKA, B. I. MIOJUIEP
OBYHCJIIOBAJIBHUU AHAJII3 JE®@OPMALIINMHOI TOBEATHKH PIJKOKPUCTAJITYHUX
EJIACTOMEPIB, HAIPYKOBAHHUX 3A TOITIOMOI'OIO 4D-APYKY, IIPU 3MIHI TEMIIEPATYPH

Lls crarTs 30cepe/pkeHa Ha MOJCIIFOBAHHI METOJOM CKIHYEHHHX €JIEMEHTIB pinkokpuctamignux exacromepis (PKE). s 1mporo 3amponoHOBaHO HO-
BHUI METO], 3aCHOBaHMI Ha KOMOIHaIil HeniHiliHOro aHami3y nedopmarii Ha ocHOBI 3akoHy CeH-Benana — Kipxroda, To6To (i3nuHo mniHilHOI, ane
TEOMETPUYHO HEJNIHIMHOI 3aJIe)KHOCTI HanpykeHHs-nedopmanil. ['pagieHTt aedopmanii MyJIbTUIITIKATUBHO PO3KIIAAAETHCS HA NIPYKHY, TEIUIOBY Ta (a-
30BO-NIEPETBOPIOBAIBHY YaCTHHH. [JIs IIepeTBOPIOBAIIBHOT YaCTHHU BHOPAHO HOBE MPEJCTABJICHHS HA OCHOBI MapameTpa opieHTarii B Mexax (yHKIii
posnoziny me3oreHis. Lei mapameTp Moxe OyTH HOB’s3aHHl 3 TeMIepaTyporo. TeH3op sxopcTkocTi B 3akoHi Cen-Benauna — Kipxroda, a Takox TeH-
30D TEIJIOBOTO PO3UIMPEHHs (JUIs TEIUIOBOI YaCTHHU TpajieHTa nedopmarii) oTpuMani 3i cxem romoreHizauii Mopi-Tanaku. [TokasaHo, mo kiacuuHe
TEIUIOBE PO3LINPEHHS 3 HO3UTUBHUMH KOC(II[iEHTaMH PO3IINPEHHS Ta PEaTiCTHYHIMHU 3HAYCHHSIMH HE POOHMTH 3HAYHOTO BHECKY B 3arajlbHy BEJIHYH-
Hy Benukux aegopmauiii. Tomy monemoBanus nedopmarnii PKE mif yac 3MiHM TeMIepaTypu 3a JOIOMOIO0 KIIACHYHOIO TEIUIOBOTO PO3IIMPEHHS €
MIOMHJIKOIO, X04a caMe 1€ POOUTHCS B JIiTepaTypi 3a JJOMOMOTOI0 XUTPOILIB, @ CaMe, BAKOPHCTOBYIOUYH HEraTHBHI aHI30TPOIHI KOe(illieHTH TEIIOBOro
PO3LIMPEHHS.

KurouoBi cioBa: 4D-1pyK, piaKOKPHCTANIYHHI enacToMep, MOJCTIOBAHHS METOIOM CKIHYCHHHX eJIeMEHTIB, cxema Mopi-Tanaku, QyHKIis
posmoziny, GpyHkuist Gopmu.

Introduction. 4D printing of liquid crystal elastomers (LCEs) is an emerging field that combines the anisotropic
responsiveness of LCEs with additive manufacturing techniques to create structures capable of dynamic, stimuli-induced
shape transformations over time [1]. LCEs are crosslinked polymer networks that incorporate liquid crystalline
mesogens. These mesogens can be aligned during fabrication, enabling the material to undergo reversible, anisotropic
deformations in response to external stimuli such as heat (temperature change), light, or electric fields. This unique
combination of properties makes LCEs particularly suitable for 4D printing applications, where time-dependent shape
changes are desired [2]. Several additive manufacturing methods have been adapted for 4D printing of LCEs:

o Direct Ink Writing (DIW) [3]: This extrusion-based technique allows for the alignment of mesogens along the
printing path due to shear forces during extrusion. Post-printing, the structures are typically cured using UV light to fix
the alignment. DIW is noted for its flexibility and rapid printing speed [3].

e Vat Photopolymerization (e.g., SLA and DLP) [3]: These methods use light to cure photosensitive resins layer
by layer, achieving high-resolution prints. They are particularly useful for creating complex geometries with fine fea-
tures.

e Inkjet Printing: This technique deposits tiny droplets of material to build up structures and is valued for its high
resolution and ability to handle multiple materials simultaneously.

Each method offers distinct advantages and is chosen based on the desired properties and applications of the final
LCE structure [4]. LCEs exhibit several key properties that make them ideal for 4D printing:

o Stimuli-Responsive Behavior [4]: They can undergo significant, reversible shape changes when exposed to ex-
ternal stimuli.

e Programmable Anisotropy [2], [5]: The directionality of deformation can be programmed during fabrication by
controlling the alignment of mesogens.

o Complex Deformation Modes [2]: By designing specific mesogen alignments, LCEs can achieve intricate move-
ments such as bending, twisting, and folding.

The unique properties of 4D-printed LCEs open up a range of applications:

e Soft Robotics [1]: Creating actuators and robotic components that can move and adapt their shape in response to
stimuli.

e Biomedical Devices [5]: Developing implants or drug delivery systems that change shape or function within the
body.
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e Optical Devices [6], [7]: Fabricating components that alter their optical properties through shape changes.
Wearable Technology: Designing garments or accessories that adapt to environmental conditions or user needs.

Simulating the deformation of LCEs. The deformation behavior of LCEs has been extensively studied using var-
ious simulation methodologies, each capturing different aspects of their complex, stimuli-responsive mechanics. These
approaches range from continuum mechanics models to molecular simulations, providing insights at both macroscopic
and microscopic scales. Below is a summary of the primary simulation methods employed so far:

Continuum Mechanics Models

o Neoclassical Theory: This framework extends classical rubber elasticity to LCEs by incorporating the anisot-
ropic nature of liquid crystal mesogens. It models the coupling between mechanical deformation and mesogen
orientation, effectively capturing soft elasticity and large deformations [8].

o Pseudo-Anelastic Models: To account for stress softening and residual strains observed in LCEs under cyclic
loading, pseudo-anelastic models introduce separate strain-energy functions for loading and unloading phases.
This approach allows for the simulation of Mullins-like effects within LCEs [9].

o Ogden-Type Strain-Energy Functions: These phenomenological models are adept at representing complex elas-
tic behaviors, including the auxetic response (negative Poisson’s ratio) observed in certain LCEs under large
strains [10].

Finite Element Analysis (FEA)

o Thermomechanical Simulations: FEA has been utilized to simulate the bending and curling behaviors of LCE
beams under thermal stimuli. By incorporating temperature-dependent strain differences due to mesogen
alignment, these models predict deformation patterns such as bending angles and curvature [11].

o Mechanical Instabilities and Pattern Formation: Advanced FEA models have been developed to study phenom-
ena like wrinkling and buckling in LCEs. These simulations consider factors like material heterogeneity and
external constraints to predict complex deformation modes [12].

Molecular Simulations

o Monte Carlo (MC) Simulations: MC methods have been employed to investigate the molecular-level behavior of
LCEs, particularly focusing on the effects of electric fields and temperature changes on mesogen orientation
and network deformation. These simulations provide insights into the microscopic mechanisms driving mac-
roscopic actuation [13].

o Molecular Dynamics (MD) Simulations: Coarse-grained MD simulations have been used to study the relation-
ship between molecular architecture and mechanical properties in LCEs. These models help in understanding
how variations in crosslink density and mesogen alignment affect the overall material behavior [14].

Phase Field Modeling

e Domain Evolution and Polydomain Structures: Phase field models couple the elastomer network's mechanical
energy with the liquid crystal's free energy to simulate the evolution of domain structures within LCEs. This
approach is particularly useful for studying the formation and dynamics of polydomain configurations under
various stimuli [15].

Geometric and Reduced-Order Models

Bending-Twisting Rod Models: Reduced-order models, such as those based on the Kirchhoff rod theory, have been
adapted to LCEs to simulate bending and twisting behaviors. These models incorporate the coupling between curvature,
torsion, and mesogen orientation to predict complex deformations in slender LCE structures [16].

Mathematical Model. We consider LCEs as a heterogeneous material consisting of an isotropic matrix with stiff-
ness C, and thermal expansion coefficient ¢, , containing a large number of uniformly distributed mesogens, which we

idealize as spheroids with equatorial axes a and polar axis a5, composed of an isotropic material with properties C, and
o, . The mesogens exhibit a certain degree of orientation after the printing and curing process at low temperatures. How-

ever, as the temperature increases, they are able to rotate freely, leading to a random orientation distribution when the
temperature reaches T}, as illustrated in the top row of Fig. 1. At this stage, we neglect internal stresses that may arise

due to mesogen rotation. Moreover, we do not consider the internal dynamics of the process, and instead study a se-
quence of quasi-static thermomechanical states of the heterogeneous material under varying degrees of mesogen align-
ment.

In continuum mechanics, the primary elements are material particles whose macroscopic thermomechanical proper-
ties are understood as effective quantities obtained by averaging the corresponding meso-scale fields. Unlike classical
approaches, we assume that a change in the degree of alignment of micro-particles not only alters the effective elastic
moduli and thermal expansion coefficient, but also results in a change in the effective shape of the macro-particle. Fig. 1
illustrates the underlying transition process from the molecular to the continuum level: three different situations of the
Representative Volume Element (RVE) of the LCE are shown. Shown on the left is the ideal low-temperature scenario,

Bicnux Hayionanvnoco mexuiynozo ynisepcumemy «XII». Cepis: Mamemamuune
MoOQentosants 6 mexuiyi ma mexronocisax, Ne 2 (9)'2025. 135



ISSN 2222-0631 (print)

where all mesogens are perfectly aligned. On the continuum level this corresponds to a very slender spheroid. In the
RVE on the right the high temperature situation is shown, where the mesogens are isotropically (better: fully randomly)

oriented. On the continuum level this corresponds to a sphere. Finally, at some intermediate temperature 7 (t) at time ¢
we find less order but not complete chaos, which corresponds to a spheroid on its way to become a sphere. Traditionally,
such effects are modeled using a micromorphic continuum, which significantly complicates the model. Theories have

been proposed on that subject, notably by Eringen [17]. However, in this article we do not make any use of them. We
propose instead to treat the degree of particle alignment as an additional degree of freedom, the variation of which in-

duces transformation deformations F" at the macroscopic level.
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~

Fig. 1 — [llustrating the transition from the molecular (first row) to the continuum level (second row).

Thus, within this approach, the primary macroscopic quantities are characterized by the degree of alignment of the
mesogens relative to a prescribed direction m . Let us denote by n the symmetry axis of an individual spheroid, with its
deviation from the given direction m described by the angle ¢ . The randomness of the direction of the deviation im-

plies transverse isotropy of the overall properties and allows us to introduce a probability density function of the form
[18], Section 5.3.5:

b

- [(/12 e +/1€(_M/2)J, with [ v, (p)d®=1, (1)

YV ((0)

where d® refers to integration over half of the unit sphere, and the scatter parameter A4 characterizes the degree of ani-
sotropy.

The behavior of ((p) for different values of A is shown in Fig.2: the smaller A, the closer we get to an iso-

tropic distribution of mesogens and for 4 — co we get a perfect orientation in m — direction, i.e., to the transversally iso-
tropic state. We can link this parameter to the temperature 7 whilst we know that at high temperatures T, the isotropic
state prevails. This is achieved by means of the following empirical assignment:

T
——a

A A
z:z(r):%’ 1—tanhT’wT : )

In here 4, is a sufficiently large number, which characterizes the relatively ordered state of the mesogens right af-

ter printing (typically at room temperature). Moreover, @ and [ are two parameters for scaling and shifting, see Fig. 3.
To obtain F" we first note the shape tensor of an individual spheroid in the form:

A:a(l—nn)+a3nn, 3)

where 1 is the unit tensor and # is a unit vector in direction of the polar axis, and 1—nn is a projection operator onto
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the plane of isotropy. In spherical coordinates we have:
n = cos dsin ge, +sin @sin pe, + cos pe; . @)

Uy (0.6)

0.8 1.0 12 14
¢

Fig. 2 — Distribution function /1((P) for different values of A =0 (blue), 2.5 (red), 5 (green), 7.5 (black), 10 (magenta).
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Fig. 3 — Orientation parameter as a function of temperature, /‘L(T ) ,for 1, =30 and a =0.68 (blue), & =0.95 (red), f=0.1.

Consequently, the average shape tensor for the spheroid on the continuum scale can be obtained by means of the
distribution function from Eq. (1) through homogenization by integration over (half) the unit sphere © :

(4)=[, 4v:(p)d® 6)
and we obtain
(A)za(ﬂ)(l—mm)+a3(/1)mm (6)
with
18—exp(—Ax/2)A(8+4° 3+exp(-Az/2)A](3+47
a(2)=a|1+(y-1) p(6(9+13)( )| (1) =a, %(1_%}[ p(3(9+l)2)]( ) -

In here y =a;/a is known as the aspect ratio. In the present case of the LCE mesogens we have typically y =5
[19]. This means our spheroid is of prolate shape.

Introducing the transformation deformations as a tensor that links the initial and current shape,
<A> =F" ~<A>(/1w) , we find that
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Geometrically nonlinear stress strain relation. We use a multiplicative decomposition of the deformation gradi-
ent,

F = Fel 'Fth _Ftr , (9)
with, F and F*' being the contributions related to classical thermal, and (nonlinear) elastic respectively.
Now recall the definition of the Green-Lagrange strain tensor, applied only to the elastic deformation:

el _ 1 el el _ el T el
E —E(C —1), C _(F ) F (10)
This strain tensor is used in the St. Venant—Kirchhoff constitutive law [20]:
el el e\l A\ T
S =Chom (2): E*, S =det F' (F') o (F) ", (11)

where S is the second Piola-Kirchhoff stress, o is the Cauchy stress tensor, and Cy (4) is the fourth order homoge-

nized stiffness tensor, derived from the properties of the matrix and the mesogens using the Mori-Tanaka scheme.
Since homogenization via the Mori-Tanaka approach is a well-established method—particularly effective even for higher
volume fractions of inclusions—we present here only the final expression:

Crom (1) =G, +z{p(q -)" +(1—p)<“ﬁ>lJ_1 , (12)

where p is the volume fraction of mesogens, and the (averaged) stiffness contribution tensor,

("N)=1, W (0)aw. V=[(G-¢) "+ e, (13)

which is a function of A . Moreover, *P denotes Hill's tensor, which characterizes the strain at a point x :
4 2 [ .
P=(V G(x—x de) s (14)
J Vin ( ) (12)(34)

where 7 is the volume of an inclusion, G(x—x’) is the Green’s function for displacement, and s indicates appropri-

m

ate symmetrization. For an ellipsoidal domain *P is a constant and depends on the shape of the inclusion. Specific val-
ues of *P and further information on Eq . (12) are provided in Appendix B.

For the thermal part of the deformation gradient, we assume the following form:
F™ = (14 @ (A) AT ) (1= mm) + (14 @y 3 (A) AT ) mm (15)

where the homogenized coefficients of thermal expansion, @j.p,;/3(4), can also be computed via homogenization. A

detailed derivation under the Mori—Tanaka framework is provided in Appendix C:
) a— 1T o fa— \! 4\
hom () =g+ p3| P l+(l—p)< HT> :( l—< HT> ]+< HT> :(al—aO)AT. (16)
Here ¢ and ¢; are isotropic thermal expansion tensors known from experimental data, AT is the temperature

change, and *1 is the fourth-order identity tensor. The extended (averaged) compliance contribution tensor < H T> is

defined as:

<4ET>=LD Hry, (p)dw, “Hr=[“1+(5,-5,): 4Q]_1, (17)

. . . . 4= .
where S, =C;' are the compliance tensors of the matrix and the inclusions, and *Q = Cy —C, : *P: C,. < H T> is also

a function of 4.

Homogenization schemes applied to LCEs. We assign to the elastomer matrix x4, ~1MPa and k, =4, +

+% Hy =10MPa (see [21] for typical values). The mesogens are essentially rigid (see [22]). Fig. 4 shows results for the
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homogenized stiffnesses Cj, (/1) for 4 =104, , k =10k, (computed by using (12)) on the left and for rigid inclu-
sions (computed with (50)) on the right, both for a volume fraction p = 0.3 (chosen for demonstration purposes). Recall
that high values of A correspond to the transversally isotropic state at room temperature and 4 =0 to the isotropic state

at higher temperatures (ca. 100°C). The difference between the two plots at high temperatures (1 =0) is small. As ex-
pected, the stiffnesses in the direction of transversal axis are higher at room temperature (large A ) in the rigid case. For
higher volume fractions p the values increase accordingly.

20
1 25
15 — Cun P — Cun
5 — Cux g 15 — Cux
2 =3
Z 10 =
& Cuss & Cnas
10
— (3333 — Cia33
5
5
— Cuns — Cun3
0 10 20 0 40 0 10 20 0 40

Fig. 4 — Homogenized stiffnesses Cp, (1), see text.

For the (isotropic) thermal expansion of the matrix we choose ¢, =80ppm/K (elastomer matrix) and for the
mesogens ¢; =40ppm/K (see [23]). From (16) we obtain the result shown in Fig. 5 for a volume fraction p =0.3 us-
ing the stiffnesses from before. The blue curve stands for the coefficients within the isotropic plane @y, = o, and

the red one for the transverse direction ., 5 -

120 -

100

a;

80 -

60 -

40

A

Fig. 5 — Homogenized thermal expansion tensor ¢, (4) in ppm/K, see text.

Simulation of nonlinear deformations. As a first example we shall now model the deformation of double layer
LCE sheets as described in [24] within the framework of our method. Such LCE sheet structures are also mentioned in
[25], Fig. 12 and [26]. They are simple and serve perfectly to illustrate the point without distracting the attention of the
reader by complicated geometries. Clearly, for technical applications, more complicated shapes should be studied.

As shown in Fig. 6 a double, perpendicularly printed rectangular LCE structure is heated up from room temperature

to about 100°C. As noted in the supporting information to [24] the sheets are typically 35x5mm in dimension. The
sample thickness varies between ca. 0.5 and 2mm . In the real experiment the heating is achieved by electric currents

through internal wiring as indicated in the cartoon. The clamping visible in the second row of pictures is definitely not
the one used in technical mechanics when studying statically determinate systems. It is probably somewhat close to a
rigid support. A strongly non-linear smiley-type deformation behavior is observed that leads to curling of the specimen.
It is therefore not surprising that one technical application of LCEs is to use them as grippers [27], [28], [29], Fig. 77.
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Fig. 6 — LCE double layer sheet structures and their highly non-linear deformation behavior during temperature change starting from
room temperature (flat) to about 100°C , top: cartoon, bottom: reality (all figures from [24]).

In our simulations, Egs. (9) — (17) are solved numerically using the programmable finite element software FEniCS
[30]. The mesh including dimensions is shown in Fig. 7. A 40x8x12 hexagonal mesh, which is subdivided into tetra-
hedra was used. The trial functions were linear in order to reduce computation time. The top half of the FE-model shows
a printing direction m = ¢; and the bottom half has been assigned m = e, . Also, the side plane was constrained with one
node completely fixed, and all others only fixed in x —direction, allowing for free sliding in the two other directions, so
that no artificial stresses would occur at the supported end. The resulting deformation pattern shown in Fig. 8 has a re-
markable resemblance to the cartoon as well as to the experimental result shown in Fig. 6. It should be stressed again
that this simulation is based on realistic data and by using the concept of the temperature dependent orientation parame-
ter A alone. No tricks are involved.

fri y

r ,

-

10 mm

30 mm 2 mm

7J
- =5

Fig. 7 — FE-mesh used during simulations.
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Next, we explore the effect of classical thermal expansion on deformation alone. In order to get a visible effect, we
use constant extreme values from Fig. 5, namely in printing direction m we choose ~ 120 ppm/K and in the perpendicu-

lar directions =~ 40ppm/K . But even then, the effect shown in Fig. 9 is small compared to the deformation from phase
transition in Fig. 8. In hindsight one should say that the computation of «,,, (/1) based on the Mori-Tanaka scheme was

perfectly legitimate, because its application is limited to small deformations.

)

=20°C T =63.5°C =96.5°C

- e

Fig. 8 — Orientation parameter 4 based modeling of a LCE double layer sheet structure and its highly non-linear deformation

.
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behavior during temperature change starting from room temperature (flat) to about 100°C .

We now follow a suggestion for modeling the deformation behavior suggested in [31]: "LCE was modeled as a lin-
ear thermoelastic material with anisotropic thermal expansion coefficients and a Poisson’s ratio of 0.499 . The thermal
expansion coefficient & was determined from the measurements presented in [left out intentionally], and the thermal
expansion coefficients in the directions perpendicular to the axial direction were set as —a/2". The use of anisotropic
expansion coefficients with negative values is clearly a dirty trick to model the large deformations, albeit an effective
one. We extended it somewhat and put

1
FM" =(1-a AT)ee, + ——(eye, +e3¢5) . (18)
( ) 1%1 \/m ( 2%2 3 3)
The use of a square root goes back to [32]. With the fictive value a =3500ppm/K, we obtain the result shown in
Fig. 10. It is very similar to Fig. 8, indeed, but it is based on questionable premises, and, what is more, the value chose
for the coefficient of thermal expansion is absurdly large.

i £
! s = F s
T -

2
z T=20°C T'= 1550 = 100°C Sl 15
g1

Q

©
2.1

r
I T

Fig. 9 — LCE double layer sheet structures modeled by assuming regular thermal expansion only.
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Fig. 10 — LCE double layer sheet structures modeled by assuming (artificial) negative anisotropic thermal expansion coefficients.

Conclusions. Thus, in this work, we presented, first, an overview on the making (4D-printing) and currently used
simulation techniques applied in context with Liquid Crystal Elastomers (LCEs). Second, the thermo-mechanical setting
was presented: nonlinear deformation together with the new concept of a temperature-dependent orientational parameter,
characterizing the distribution of the LCE mesogens, to be used in a St. Venant — Kirchhoff stress-strain relationship.
Third, the basics of homogenization techniques required for effective stiffnesses and thermal expansion coefficients as a
function of the orientational parameter were presented. The use of this parameter was critically examined in context with
higher continuum theories. In order to be capable of accounting for high volume concentrations of mesogens Mori-
Tanaka schemes were used and explained in appendices. Forth, simulations based on the new concept were presented
and compared to the commonly used modeling way with anisotropic negative thermal expansion coefficients. It was
shown that the latter had to be unreasonably large to create adequate results, which is not necessary when using the
newly proposed method of an orientational parameter.

Appendix (a): Some information about transversally isotropic tensors of the fourth rank. For transversely-
isotropic tensors *4 it is convenient to use a tensor base consisting of the following six tensors 47} :
4 6 4
A= " 4T, (19)

with

— 1— - -
=11, Ty = 41—511, Ty =1mm, *T, =mml,
4T5 = Z(ekmekm + me,me;, + me, e, m+ e, mme; ), 4T6 = mmmm ,

1=1-mm, “1= %(ekesekes +eeee), ene Lmk,sel 2. (20)

The multiplication table for the T -tensors is as follows (the column represents the *B in a multiplication of two
tensors of the fourth rank, *4: *B ):

4T1 4T2 4-T3 4.T4 4T5 4T6

4

T

4T1 24T, 0 2°T, 0 0 0

Pl ‘T, 0 0 0 0

4;3 0 0 o ‘T, 0 ‘T, @n
4 4. 4 0 0 0

o7 2 0T4 g 2 0;"6 0 ‘T2 0

Tl 0o o o ‘T 0 T,

If x; is chosen as the axis of transverse symmetry, any transversely isotropic tensor %4, when represented in this
basis, has the following components:

A+ A4
_ A T Anp _ _ _ _ _
4 =————=, a4y =24y, a3 =A33, a4 = A3y, a5 = 44313, a5 = As3333. (22)
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Moreover, the inverse Tensor *4™" can be calculated explicitly,

4,1 _ Y 4 Ly, a4, a44 4 4, 204
A =—="T+—"T1,-—"T,—"T,+—"T.+—"T., A=2(aya, —aya,), 23
a g BT BTy Tt Bt e (ayas —asay) (23)

and double outer scalar products are given by
‘4:'B= (2a,b, +azb,) ‘T + ayb, T, + (2a,b; +asb, ) T+

+(2a4b, +agh, ) *T, +%a5b5 Ts +(aghe +2a,by ) *T; . (24)
Unit tensors of fourth rank can also be spanned in this base:

1
=D T+ T4 2 T T 1= T T T T 25)

Appendix (b):Hill’s and Property contribution tensors. The homogenization is based on the solution for the
Eshelby problem of an inhomogeneity. The region V], called the inhomogeneity (i.e., the mesogens), has elastic proper-

ties C, or S, = C;' (the so-called compliance tensor fourth rank) that differ from those of the surrounding material, i.e.,
the polymer matrix (C, or S, =C, 1. In the present case we will assume both of them to be isotropic, The matrix is
subjected to remotely applied loading by stress or strain, o, or &,, respectively. The primary objective of this problem
is to determine the resulting stresses and strains both inside and outside V|, as well as the stress concentrations along its
boundary. If V] is an ellipsoid, the solution can be expressed in a closed form using elliptic functions, which simplify to
elementary functions when ¥} has the spheroidal shape. We are primarily interested in the strain and stress fields inside
the inhomogeneity. For an ellipsoidal domain, the strain field is given by
gn="A, 50, "N, =14 1P(C —co)]_l, (26)
where 4Am is the strain concentration tensor and *P is Hill's tensor which determines the strain at a point x :
P=(V[ Gx-x)Var)
(12)(34)

where s refers to the appropriate symmetrization and G(x - x’) is the (known) Green’s function. For a spheroidal inho-

@7

mogeneity *P remains constant within the interior points of /], which implies uniform strain within. Similarly,
-1
4 4 41, 4
on =", 00, A, =[1470:(5,-5,)] (28)
where the tensors ‘Q and *A_ are defined as

f0=Cy—Cy:*P:Cy, ‘A, =S,: A, (. (29)

Isotropic stiffnesses (for the polymer matrix and for the mesogens) are given by (A and g are the two Lamé pa-

rameters):
40:,111+2y41=2f:1q T, Co=A+u, Cy=2u, C;=Cy =4, Cs=4u, Cg=1+2u. (30)
For a spheroidal inhomogeneity the tensors ‘P and 4Q , are elementary functions of the aspect ratio y =a;/a,
namely,
4 6 4 4 6 4
P=3" ()T 0= 4 (»)'T, (31
with
1 1 K
=—I|(l-x)fo+xf | =—I|(2-x)fo+Kf | =ps=——/,
P 2 [( )fo fl:' 2] 2 [( )fo f1:| P3 = P4 /Jfl
pe= L[ fyaxf), pr=[(1-R)1-200)+ 26 ], k=L (2)
u u A+2u
and

q = pu[4c-2(3x-1) fo-2xf, |, q =2u[1-(2-x) fy-x ;]
Q3:(I4=2,U[(2K—1)f0+2’ff1], ‘15:4ﬂ(f0+4’ff1)a C]ézgﬂ’f(fo_fl): (33)

where for a prolate inclusion (as in the case of the mesogens) we must put
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i L y+N7 - 7 ) n YN - 3 (34

L P ey g (ﬁ-02@y+°n$75‘ R

The next important concept is the property contribution tensors, which describe the contribution of an inhomogene-
ity to the effective property of interest. This is done under the assumption that the inhomogeneity is embedded in a uni-

form applied, o, or ¢, (tractions or displacements on the RVE have the form t|6V =n-o, or ”L’W =x-&,). We con-

sider an RVE, V', containing an isolated inhomogeneity of volume /| (the mesogen) The volume-averaged stress and
strain fields can be expressed as
<J>:C0:£O+A0', <g>:SO:00+A5. (35)
Since the material is assumed to be linearly elastic, the additional stress and strain contributions due to the inho-
mogeneity are linear functions of the applied field:
Acr=4N:gO, A£=4H:0'0, (36)
where *N and *H are the so-called stiffness and compliance contribution tensors.

For an ellipsoidal inhomogeneity, the property contribution tensors can be expressed in terms of Hill’s tensors,
which provide the average field inside the inhomogeneity in terms of the applied field. By introducing the strain aver-

ages over the inhomogeneity, (¢&). , and over the matrix, (&)  , we obtain
g g y n out

(&) =M+ SNy = S0 () 458150, 67)
By expressing (o) = from the relation
)+ 0D = (38)
we obtain
(g) =510 +%(Sl =50):(0);, = S0 100 +(0) +%(S1 ~59): *Ag 10y (39)
so that
4H:%(Sl =8y): A, (40)
Using (28), we conclude that
N =[H1+00:(5,-5)] = = h [(Sl S,) "+ 4QT. 1)
A similar procedure applies for stresses, leading to the stiffness contribution tensor,
4N=%(C Co): *A, (42)
and with (26),:
A =[14P(G-C)] > N = %[(q —c) "+ 4PT . (43)

So far only one inclusion was involved. Now let us assume there are many inclusion types labeled by the index £ .
The simplest approximation is to assume no interaction, such that the inhomogeneities are treated as isolated entities,
and interactions between neighbors are neglected. In this approximation, the property contribution tensors weighted by
volume fractions simply sum up, and (36) reads:

AC=(Z4 *Ny), AS=(3Z, *Hy) in Ac=AC:45,, Ac=AS:0y. (44)
In comparison with (35) we obtain the homogenized stiffness
Chom = Co+(Zk *Ni)s Shom = S0 +(Zx *Hy). (45)
In this equation we still allow that each type of inclusion has different contribution tensors,
v, -1 -l
N ZVk[(Ck_Co) +4Pk:| , 'Hy = |:(Sk ) + Qk:| . (46)

It should be noted that the inclusion types can have different aspect ratios and be oriented differently,
B =P (v m), ‘O = *Oy (74> m; ). In order to prepare for continuous distributions, we now assume that all types

. . . . . 1
of inclusions contribute with the same volume fraction AV, so that p :;Z Vi =

represents the total volume

fraction of inclusions. Let us further replace the summation of the property contribution tensors by integration over ori-
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entations using the distribution function from Eq. (1). Similarly, as in Eq. (5), we then obtain

<4N> = [, "Ny, (¢.0)d0, ‘N = [(c1 —c) "+ 4PT, Coom = Cy + p<4ﬁ>, (47)
and
<4ﬁ> = [, Ny, (¢.0)a0, “H= [(S1 —5,) "+ 4QT, Spo = Sy +p<4ﬁ>. (48)

This is the Non-Interaction-Approximation (NIA) for the case of a continuous randomized distribution of inclu-
sions all of the same stiffness and compliance, C;, S, , respectively. It holds for p -values that are not too large, say 1 %

4— 4—
— 10 %. Note that the property contribution tensors < N > and < H > are transversely isotropic tensors of the fourth

rank depending on the orientation parameter A .

The NIA homogenization can be improved: in the advanced Mori-Tanaka schemes (see [18], Section 5.6.2) the in-
teractions between inhomogeneities are accounted for by placing the inhomogeneities—treated as isolated ones—into a
uniform field that is equal to its average over the matrix part of the composite and that generally differs from the re-
motely applied one. Then the effective elastic stiffness and compliances are given by:

-\t e
-1 4— -1 4—
Chom =Co+p[p(cl -¢) " +(1-p)('F) J . Shom =So+p(p(sl -5) +(1-p)( 'H) ] S @
If the inclusions are rigid (as the mesogens are when compared to the matrix) these equations simplify:
-1
4— 4—
Chom :CO+L< P>’ Shom :SO+L< Q> . (50)
1-p 1-p

Appendix (c¢): Mori-Tanaka scheme for thermal expansion. For homogenization of the thermal expansion coef-
ficients o similar ideas as in the previous Appendix apply: each inhomogeneity is treated as an isolated one placed into

a uniform stress field that is equal to its average over the matrix part of the heterogeneous material, o, = <a>m , and that

generally differs from the remote stress o, . The stress averaged over the RVE reads:
v,

oy =(o) =2 [ e (o), +(1-pi) (o), | Pk:7k- (51)
According to the basic idea of Mori-Tanaka scheme stresses within an inhomogeneity is defined as
' ) V
o(x)=o. —IVk 4Z(x—x ):[(Sk -8y):o(x)+ (e —ao)<0'>m], P :7",
Z(x-x")=Co:[VG(x—x")V']:C,—CpS (x'). (52)

Note that later we will assume that the tensors of thermal expansion of the inclusions and of the matrix (i.e., ¢;
and ¢, respectively) are isotropic. AT denotes the temperature change. If the domains V, are ellipsoidal then the
stresses inside are uniform and therefore

o(x)=0. -0, :[(Sk -8y):(o), +(a —aO)AT],

3
O (7o )= Co = Co  *B (v mi ) : Cos B (71> my ) (V_[ Vidx' )( o) (53)
It follows that
-1
(o) = *A7 [0 =0 (@~ )AT |, *AT =[ 1440, (8, -5)) | (54)
and therefore from (51):
o0 =% P AT+ (1= pe) 1o =2 [ 0 AT 0 < (e — ) AT | (55)
or
-1
o. =[zk(pk4Ag+(1—pk)41)] :{ao+zk[pk4/\;j 40, 1 (a —aO)AT]} (56)
and so

-1
(o) = *A7 :{[zk (pk4Ag+(l—pk)4l):| :(0'0+Zk [ A7 0y <, —aO)AT})—“Qi (e —aO)AT} (57)
The strain averaged over the RVE is given by

(&) =2 [ pe (&), + (1= 2 )(e),, |= [ a (i (o), +aAT)+ (1= p, )(Sy (o), + @AT ) - (58)
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We now take into account that

(l_pk)<0>m =00 =Xy Dx <0>k~ (59)
and find with (55):
(€)=8y:00 + AT +%; p; |:(Sk —So)_1 o), +( —aO)AT] =
:S0:0'0+a0AT+{kak4Hk:|:pk(Sk—S0) Hy+(1- }
B =
:zk(pk4Hk:{zk|:pk(Sk_S0) 1:4Hk+(1_pk)41:|} j Zy [Pk4/\ 0 (e aO)AT:|+
+3, [pk(4l— e 0 ) (o —aO)ATJ . (60)
We note that
1
Hy=(Se=S0): AT =[(Sc-50) "+ 40| (61)
We define
N-tH 0, =, (-0, ) = *H (5, -5,) " = "Ha (62)
and conclude
_ _ 4—
740 = (S —Sy)  H *0 = (S, - Sp) 1:(“1— HTk). (63)

Let us finally consider a two-phase material with identical inhomogeneities and assume that the inhomogeneities
distribution over size is statistically independent of the distribution over orientation. Then after recalling (48) and adjust

4ﬁk - Hrk or rather <4ﬁ> - <4ET> we get:

2 (Pk 4Hk):{2k [Pk (Sk -y )_1 : 4Hk +(1_pk)41:|} = P[P(S1 =S )_1 +(1—P)<4E>_1]1 (64)

recover (49), and obtain finally

Qo = Ay + P |:p41+(1—p)<4ﬁr>_1:|_1 :{41—<4ET>_1]+<4E7>_1 (ey —at ) AT . (65)

It should be noted that the Mori-Tanaka scheme for thermal expansion seems to be less known than the one for
stiffnesses, since articles on it have been published relatively recently, [33].
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