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CLASSICAL PROBLEM ABOUT AN ELASTIC SPHERE WITH A SPHERICAL INCLUSION

For the first time, an exact analytically justified solution of the second axisymmetric boundary value problem of the theory of elasticity in the general
formulation for a sphere with a concentric spherical inclusion has been obtained using the conventional Fourier method. In the scientific works of the
classics of natural science of the 19th and 20th centuries, M. G. Lame, W. Thomson, C. Somigliana, V. Cerruti, B. G. Galerkin, G. Fichera, A. I. Lurie,
E. Strenberg, and A. F. Ulitko, elastic problems for a solid sphere, space with a spherical cavity, and a sphere with a concentric spherical cavity were
solved in various formulations. But even these problems were not strictly justified. The problem considered in this report is much more complex, since
it is associated with the conjugation of displacement and stress fields at the inclusion boundary. That's probably why it wasn't considered before. The
justification for solving such a problem and establishing its solvability class using the usual Fourier method is based on the analysis of a solvable alge-
braic system of the sixth order with coefficients that depend on five independent continuous parameters and one discrete one. The general solution of
the problem is given in the form of series in terms of axisymmetric vector basis solutions of the Lamé equation for a sphere, constructed by the authors
in one of the previous articles. After transitioning to stresses and satisfying the boundary conditions, a resolving system of the above form is obtained.
When analyzing the system, a lower estimate of the modulus of its determinant was first found, from which follows not only the unique solvability of
the system, but also estimates of the solutions of the system itself. In estimating the determinant, a new classical inequality was proven for one con-
tinuous and one discrete parameter, previously unknown to the authors. The next step was to prove a theorem about the conditions that must be im-
posed on the vector of the external load applied to the surface of the sphere, which ensure the existence of a solution to the problem in a certain class of
functions. In the numerical implementation of the solution to the problem, two types of loads on the outer surface of the sphere were considered, which
satisfy the equilibrium condition. A computer experiment was conducted with three types of materials for a ball and an inclusion: steel, brass and alu-
minum. Graphs of normal and tangential stresses on the surface of the inclusion were obtained, and their parametric analysis was performed depending
on the geometric and mechanical parameters. The practical convergence of the method was investigated.

Key words: elastic sphere, spherical inclusion, Fourier method, second axisymmetric boundary value problem, exact analytically justified solu-
tion, field conjugation, resolving system, solvability class, external load vector, parametric analysis, practical convergence.

O.TI. HIKOJIAEB, M. B. CKIIIKA
KJIACUYHA 3AJAYA ITPO ITPYKHY KYJIIO 31 COEPUYHUM BKJIIIOYEHHAM

Vrnepuie 3BnuaiiHuM MetogoM Pyp’e OTpEMAaHO TOYHHMIT aHATITHYHHN OOIPYHTOBAaHMH PO3B’SI30K APYroi OCECHMETPUYHOI KpaloBOI 3amadi Teopil
IPY’KHOCTI B 3arajbHil MOCTaHOBII JUIS KyJi 3 KOHIEHTPHYHUM C(epPUUHUM BKIIOUEHHSIM. Y HAyKOBHX IIpalsiX KIACHKIB IPHPoo3HaBcTBa 19 i 20
cronith M. G. Lame, W. Thomson, C. Somigliana, V. Cerruti, B. G. Galerkin, G. Fichera, A.I. Lurie, E. Strenberg, A. ®@. YiiTko po3B’si3yBaiucs
NPYXHI 3a1a4i U1 CYLIIBHOI KyJli, IPOCTOPY 31 c(hepHvHOI0 MOPOKHUHOIO 1 KyJIi 3 KOHIEHTPHYHOIO CHEPUIHOIO MTOPOIKHUHOIO B Pi3HHUX IMOCTAHOB-
KaX. Ase HaBiTh IIi 3a1a4i He OyJI0 CTPOro OOIPYHTOBAHO. 3aJayua, sKa PO3IISAAEThCS B M CTATTi, 3HAYHO CKJIAJHIIIA, OCKLIBKY OB sI3aHa 31 CIps-
JKEHHSIM TIOJIiB ITepeMillieHb 1 Halpy»keHb Ha Mexi BKIoueHHs. ToMmy, MaOyTs, 11 paHinie He po3riinamn. OOrpyHTyBaHHS po3B’sI3Ky IOIiOHOT 3anaui
Ta BCTAHOBJICHHS 11 KJIacy po3B’sI3HOCTI 3BHYaifHUM MeToioM Dyp’e 6a3yeThest Ha aHaIi31 Po3B’sI3yBaIbHOI aareOpaidHOl CHCTEMHU LIOCTOTO MOPSAKY 3
KoediieHTaMu, SIKi 3a1eXaTh BiJ| II’ITH He3aJIeKHUX HEIIePEpPBHUX MapaMeTpiB i OJHOTO JUCKPETHOTO. 3arallbHUK PO3B’SI30K 3a1adi IOJAEThCS Y BH-
IS PAAIB 32 OCECHMETPUYHUMU BEKTOPHUMH 0a3MCHYME PO3B’I3KaMH PiBHAHHS Jlame 11 Ky, moOyOBaHHMH aBTOpaMH B OZHIH 3 IONepeIHiX
crareil. ITicis nepexo/y 0 Hampy>KeHb i 3a0BOJICHHS TPAHMYHUX YMOB OTPUMAHO PO3B’s3yBajlbHY CHCTEMY BKa3aHOTo BHIle BUIIy. I1pu aHanisi
CHCTEMH BIIEpIIE 3HANICHO HIKHIO OLIHKY MOJYJIs 1i BU3HAYHHKA, 3 SIKOI HE TIIBKM BUILUIMBA€ yMOBA OJHO3HAYHOI PO3B’SI3HOCTI CHCTEMH, a e #
OLIIHKHU PO3B’sI3KiB caMoi cucteMu. IIpn omiHNi BU3HAYHNKA OYII0 JOBEACHO HOBY KJIACHYHY HEPIBHICTB JUIS OJTHOTO HEIIEPEPBHOIO i OHOTO AUCKPET-
HOTo0 mapameTpiB, HeBioMy aBTopaM. HacTymHuM KpokoM OyJio JOBEIECHO TeopeMy PO YMOBH, sIKi Tpeba HAKJIACTH Ha BEKTOP 30BHIIIHBOIO HaBaH-
Ta)XEHHS, TPUKJIJICHOr0 JI0 MOBEPXHI Kyii, sIKi 3a0e3NeuyloTh iCHYBaHHS PO3B’A3Ky 3ajadi B NMeBHOMY kiaci ¢yHkuii. [Ipu uucenpHiil peanmizaii
PO3B’sI3Ky 3ajadui po3riLIIaNucs 1IBa THIHM HABAaHTAXKEHb HAa 30BHIIIHIO NOBEPXHIO KyIIi, SIKi 3aJIOBOJIBHSIOTH YMOBY BpiBHOBakeHOCTI. IIpoBeneHo
KOMIT'IOTEPHHUI €KCIIEPUMEHT 3 TPhOMa MaTepialaMy KyJii 1 BKIIOUCHHS: CTallb, JaTyHb, aloMiHii. OTpiuMano rpadiki HOPMAIbHUX 1 JOTUYHUX Ha-
NPY>KEHb HA MOBEPXHi BKIIOYEHHS, MMPOBEJCHO IX MapaMEeTPUYHHUN aHalli3 B 3aJEXKHOCTI BiJl FEOMETPUYHMX 1 MEXaHIYHUX MapamerpiB. JlocimikeHo
NPaKTHYHY 30DKHICTH METOAY.

KurouoBi ciioBa: mpyxHa Kyis, chepuuHe BKIIOUYEHH:, MeToq Dyp’e, Apyra ocecuMeTpHYHa KpaiioBa 3ajaya, aHAJITHIHHN OOIPYHTOBAHHI
PO3B’SI30K, CIIPSHKEHHS IOJiB, PO3B’A3yBabHA CUCTEMA, KJIAC PO3B’SI3HOCTI, BEKTOP 30BHILIHBOIO HABAHTAXKCHHS, TApaMETPUYHUIT aHAIIi3, IPAKTUYHA
301XKHICTb.

Introduction. It can already be said today that new types of materials, among which, first of all, composite and po-
rous materials should be highlighted, have revolutionized industries around the world, offering unprecedented opportuni-
ties for innovation. According to expert forecasts, the global market for composite materials alone will grow by an aver-
age of 7.2 % each year over the next 5 years. Microelectronics, construction, mechanical and aircraft engineering, re-
newable energy, chemical industry, rocket and space technology, biology, medicine - this is far from a complete list of
areas where various products made of porous and composite materials are used, which, depending on the constituent
components, microstructure, size and shape of pores and inclusions, and production technology, have different physical
and mechanical properties. Modern technologies place particular emphasis on the creation of nanomaterials with prede-
fined properties. This process is always preceded by mathematical modeling of their possible properties, in particular,
strength, which is based on the study of the stress-strain state in the body near inhomogeneities. In this context, the
sphere or spherical cavity plays a fundamental role as the most natural and simple heterogeneity in a body. As early as
1933, J. Goodier used spherical inhomogeneity in an elastic body to model the stressed state of a material with small air
bubbles and steel with slag balls. It is interesting that while there is a sufficient number of scientific articles from the
mid-19th century to the present day devoted to problems about an elastic sphere or a space with a spherical cavity, there
are no studies of even axisymmetric problems in the general formulation about a sphere with a spherical inclusion or a
space with spherical inclusions and a layer. The latter is due to the serious complexity of such problems, especially when
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strictly justifying their solutions. The question of constructing a justified solution (except for problems for a simple
stressed state, where this is not necessary at all) for any problems about a sphere has never been considered at all.

In this work, an exact, well-founded analytical solution of an axisymmetric problem in the general formulation
about a loaded elastic ball with a spherical inclusion is obtained for the first time. The conditions for the solvability of
this problem by the Fourier method in a certain class of functions are established. The results of a computer experiment
with different types of ball and inclusion materials are presented. A parametric analysis of the stresses on the inclusion
surface is performed.

Review of previous research results. The problem of an elastic hollow sphere was first considered by G. Lamé in
his lectures [1]. In this treatise, Lamé considered two problems: on the vibration of a solid sphere and on the normal
pressure on the concentric boundary surfaces of a hollow sphere. The work presents the system of Lamé equations in
spherical coordinates, introduces a potential function, thanks to which the system of Lamé equations is reduced to a
wave equation. Then, the method of separation of variables is used. When solving the Legendre differential equation,
some analogs of functions were used, which are today called associated Legendre functions. There is no justification for
the solutions given. A closed-form solution was found for the empty sphere. Chronologically, the second work on the
empty sphere was done by W. Thomson [2] more than 10 years after the publication of Lamé's lectures. Here the problem
has already been considered in a general formulation. The solution was written as a power series in the radial coordinate,
the coefficients of which are combinations of surface spherical harmonics (for some reason expressed in Cartesian coor-
dinates). After substitution into the equation of equilibrium in the displacements, a system of differential equations was
obtained with respect to these harmonics on the surfaces of the sphere. The problems of convergence of the obtained se-
ries and justification of the solutions are not raised. In the work of Somigliana C. [3], problems for a solid sphere, a
space with a spherical cavity, and a sphere with a cavity (displacements are given on concentric surfaces) were consid-
ered. Displacements were written by combinations of volume and surface potentials. After that, the problems were bro-
ken down into a series of simpler problems for which the integrals with potentials can be expressed in terms of one-
dimensional integrals. In the empty sphere problem, the solutions are written as series, about which in the paper it is
said: «if convergent, all the conditions of the problem are satisfied. The article [4] is devoted to the solution of the prob-
lem for an empty sphere with symmetrical loading on its surfaces. The displacement is written in terms of surface poten-
tials expressed by series similar to the series, which sets the generating function for the Legendre polynomials. The issue
of convergence of series is not discussed in the paper. In various formulations, the problem of elastic solid and hollow
spheres is considered in the article [S] and the monograph [6]. The solutions are constructed in the form of series by
spherical functions. There is no study of the convergence of the obtained series in the work. In [7], an elastic sphere sub-
jected to concentrated forces is considered for the first time. The solution was divided into two groups of terms. The first
of them specifies solutions that have a singularity, obtained by the limit transition from a uniformly distributed load in
the vicinity of the poles of the sphere. The second group is ordinary solutions in the form of series for spherical func-
tions. The issues of substantiation of the obtained solutions were not considered. In the monograph [8], a similar prob-
lem was solved by the method of eigen vector functions. The problem for a spherical inclusion in an unbounded elastic
body was probably first considered in [9]. Solutions in the form of series in terms of spherical functions were used to an-
alyze the influence of a small spherical inclusion on the perturbation of a homogeneous stress state in the body.

Let us dwell on the current state of the problem of an elastic sphere with various complications or space with spher-
ical heterogeneity. In [10], simple types of loading of an infinite matrix with spherical inhomogeneity are considered —
constant uniaxial and omnidirectional loading. An inclusion or a cavity is chosen as the inhomogeneity. The solutions to
the problems are obtained by elementary methods. The displacement of the points of the surface of the inhomogeneity is
given by the displacement of the points of the poles and the equator, which are directly related to the external load. The
relationship between the displacements of the specified points and the stresses on the boundary of the inhomogeneity is
carried out by the method of compatibility of deformations for statically indeterminate systems. In [11], the problem of
displacement and rotation of a weakly deformed spherical rigid inclusion embedded in an unbounded elastic medium is
considered. The surface of the inclusion is described as a perturbed spherical surface using a term that has the first order
of a small parameter. The boundary condition for the displacement vector is set on the perturbed surface and includes the
translation vector and the rotation vector. Series in tensor spherical functions and asymptotic series in a small parameter
are used. The problem is divided into two separate problems for translations and rotations. The work [12] is devoted to
the analysis of the influence of interfacial stresses on the elastic field inside a nanoscale inclusion. The problem is con-
sidered in a symmetric formulation. Goodier's approach is used to construct solutions to the Lamé equation in terms of
two volumetric spherical functions. The displacement field in the matrix and inclusion is constructed explicitly, provided
that the auxiliary harmonic functions are chosen in the simplest form — one or two harmonics. A similar approach was
used in the article [13] to solve the problem of the stressed state of an elastic medium with a small spherical cavity. In
[14], a closed-form solution is given for the stress fields around a rigid spherical nanoparticle under uniaxial tensile load-
ing. The work explicitly takes into account the presence of an interfacial surface around the nanoparticle with a thickness
comparable to the particle size and elastic properties different from those of the matrix. Only the principal terms of dis-
placements and stresses in the matrix and the interfacial spherical layer are taken into account. In [15], the stress field in
an infinite body with a spherical inclusion surrounded by a spherical ring embedded in an unbounded matrix phase is in-

Bicnuk Hayionanvnoeo mexuniynozo ynisepcumemy «XIl». Cepis: Mamemamuune
108 MOoOeniosants 6 mexuiyi ma mexnonozinx, Nel (8)'2025.



ISSN 2222-0631 (print)

vestigated. The whole body is subjected to a uniform load in the far field. The approach used is to directly solve the
Lamé equation, separately for the deviatoric part and the hydrostatic part of the far field deformations. The displacement
is assumed to have a form directly proportional to the far-field deformation, with unknown functions that remain to be
determined. Differential equations were obtained for the functions, which were solved analytically. The results were ob-
tained in closed form. Studies of the stressed state of elastic space with a multicomponent system of spherical cavities or
inclusions were investigated by the generalized Fourier method in articles [16 — 18]. More complete research results are
presented in the monograph [19].

The above bibliographic review shows that the problem of symmetric loading of an elastic sphere with spherical
inhomogeneity in a general formulation has not been considered, and the questions of justifying the obtained solutions of
other problems for a sphere have not been posed at all.

General formulation of the problem. Consider a sphere centered at a point O of radius R, , which has a concen-
tric spherical inclusion of radius R; (R, < R,) made of another material. Let us introduce a spherical coordinate system
(r, 0, ¢), the origin of which will be aligned with the point O. Let's mark the domains Q, ={(r, 6, ¢): R, <r <R},
Q ={(r,0,p):r <R;}. We will assume that the material of the part of the sphere that occupies the domain Q; has
mechanical characteristics (G;,v;) (j=0+1), where G — shear modulus, v — Poisson’s ratio, the conditions of ideal

mechanical contact are met on the inclusion surface.
Let us consider an axisymmetric boundary value problem in stresses for a piecewise homogeneous sphere

Q, UQ, , which is specified by the conditions:

620j+1_2vi(60j)=0, feQ;, j=0+1; (1)
J
(UO)\r=R1 = (U, =R, » (FUO)V:RI = (FUI)V=R1 > )
(FUy),—g, = 2Go 2. Lf" B, (cos 0)&, + £V P} (cos 0),] 3)
n=0

Here U ; (j=0+1) denotes the displacement field in the domain Q;, F U ; 1s the stress vector on the surface

I, ={(r,0,9):r=R;} with the normal 7; =e¢,, corresponding to the displacement vector Uj , V is the nabla opera-

tor, {€,., é,} is the unit vectors of the spherical coordinate system, X is a point in three-dimensional space whose Carte-

sian coordinates are related to the spherical coordinates (7, 9, ).

Reducing the problem to a resolving system. Let us solve the boundary value problem (1) — (3) by the usual Fou-
rier method. We will use the results of work [20]. The general solution of equation (1) in the domain Q; (j=0+1) can

be written as follows:

Uy(X) =D [al) Ry W, (r, 0) + al )Ry "W, (r, )1+ Y [a VR ZW (v, 0)+a) RIS, (r, 0)], Q. (4)

n=0 n=0
U, =Y [bl,,,Rf’”le,"n (r, 0)+b, R, (r,0)], X€Qy, (5)
n=0
where
W, (r, 0) = Vwy (1, 0), Wa(r, 0) = 23V (r, 0) = Car Wi (r, 0), V) (r, 0) = V[ wi (1, 0)], (6)

wi(r,0)=r""'P (cos@), w,(r,0)=r"P,(cosb),
Zw=n(dv=3)+2v-2, y, =n(dv-3)+2v-1, ¢, =2n-1)(2v-2), &, =(2n+3)(2v-2).
Here, the vector functions {7, (r, 0), W;', (r, ), Wy, (r, O)}iry ({W4(r, ), Wi, (r, 0), W5, (r, 0)}r_, ) form axisymmet-
ric basis systems of solutions of the Lamé equation for the exterior (interior) of the sphere [20], P,(x) are Legendre pol-
ynomials, and {a(f Nyl 041> J = 0,1 {b; }n 04=1 are unknown coefficients. Let us use the formulas obtained in [20] to

represent the vectors U ;(¥) and F U ;(¥) in the form of an expansion over a spherical basis

n 1
U0 (X)= Zal((? — nP (cosO)e, +P (cosO)ey]+ Zaéog 2 [,6’1 ,(IO)P (cosO)e, + p, , (O)P (cosO)ey ]+
n=0 0 n=0 0
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+Za<” i [—(n+1)P,(cos 0)é, + P} (cos 0)é,]+ Za(l) [ﬂl HOP, (cos ), + ') P (cos 0)8, 1, (7)
n=0 I’
n—l
Ul(x) Zbln I [nP,(cosO)e, +P (cosO)égy] -i—Zb2
1 n=0 1

+1
[B.\VP,(cos 0), + B, P, (cos 0)8,1, (8)

1n

Z al’) ’n ~(n—=D)[nk,(cos 0)z, + P, (cose)e9]+2a§°,3 Ro [ P, (cos 0), + p; P, (cos 0)é, ] +
n=0

+Z a(l) M (n +2)[(n+1)P,(cos 0)é, — P! (cos 0)é, ]+ Z a“> [p1 FOP (cos0)2, + p3') Pl (cos0)é,],  (9)

n+1

n=0
B S - cos08, + Bl o500, 1+ 3y B (cos008 + 5 Bl cos O, (10
2G1 Olan2 n— n e e,g 02nR pln e p2 e,g s
n= 1 — 4

where
I =—nm+3-4v)), BV =n+dv, -4, BV =(n+D(n+dv;-2), B =n—4v, +5,

1,n

o =n(® +3n-2v;), p3\)) ==’ +2v;-2), pi\) =+’ -n-2v,-2), p,\) =n’+2n+2v;-1.

Let us substitute formulas (7) — (10) into the conjugation conditions (2) and the boundary condition (3). After
equating the coefficients in the corresponding Legendre functions, we arrive at the algebraic system with respect to the

unknowns {a\?)}% .\, j=0,1; {b,, 1%

n-2 n
R R
n(R—lJ al®) +(n+1)(n+4vy — 2)[R—1J ) —(n+1)a) —n(n+3—4vy)al) = nby, +(n+1)n+4v, = 2b,,, (11)
0 0

-2 n

R R

(R—lj a%) +(n—4vy + 5)(R—1] al) +a) + (n+4vy —4)as) = by, +(n—4v, +5)b, (12)
0 0

n-2 n
R
(n+)(n+ 2)a(1) + n(n +3n-— 21/0)012 Doy n(n—-1) ( 2 J al(?l) +(n+ 1)(n2 -n=2v,-2) [R—l] ag?z =
0 0

:%[n(n—l)bl,n +(n+1)(n* —n-2v, =2)by,1, (13
0

n-2 n
~(n+2)a’) —(n* +2vy -2)al) +(n- 1)[R j al%) +(n’ +2n+2v, —1)(&] al’) =
0

((;;1 [(n=Db, +(n? +2n+2vi=Db,, ], (14)

0

n+3 n+l
n(n="1)a’) +(n+1)(n" —n—2v,—2)as) + (n+1)(n+ 2)(R j af) +n(n® +3n— 2@(%} al) =7, (15)
0 0

n+3 n+l
R R
(n—=1a%) +(n* +2n+2vy —1)ay’) — (n+ 2)(R—1] al’) —(n* +2v, - 2){R—1] a) = 10 (16)
0 0

From the first two equations of the resulting system, we find b, ,, b, ,

n—-2 n
-(0)
o =1-C2ED gt o o) g0 2O D g (Ko g Ba g (B )
s A—(l) 5 > 5 A_(l) 5 RO > A;(l) > RO

b (2)’! +1) M 4 n(2n-1) (1) A;(O) [ﬁ}n (0) (18)
2, _ 1,n _ 2.n _ 2,n°
n An(l) A~D O] R,

n

where A, =2[(3-4v;)n+1-2v;1>0.

Let us eliminate the unknowns b, ,,, b, , from equations (13) — (16). After some transformations, we write

{[n +(1=2vy)n+1- v0]+2G—1(n DB —4v,)n+2— 21/0]} +
0
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n-2 n
+(1—%J(n—1)(2n+1)(%] <°>+( Oj(n l)(n+l)(2n+3)£ROJ ay) =0,

G, [n +1+2v)n+1+v]
(1)

{n+2+2 } (2n+1)a(1) +n(2n— l)agi]

0

G SO RY
+ 22 + A+ 2v ) n+1+v | —2——2[n* +(1+2v)n+1+vy ] || == | a® =0.
|: GO [ ( l) l] A;(l) [ ( 0) O] RO 2.n

n+l
(n=1)2n+1)a) +(n—1)(n+1)2n+3)as) +2[n* +(1-2vy)n+1- vo](gj a) = 7 +(m+) £,
0

n+3 n+l
R R
—2n® +(1+2vp)n+1+v,las) +(n+2)(2n + 1)(%} al) +n(n+2)(2n— 1)[R—1j al) = £ —nf?.
0

Analysis of the resolving system. Let us write the determinant of the resolving linear algebraic system (19) —

(the order of the rows of the determinant is given from the last equation to the first)
(n+2)2n+D)p"">  n(n+2)2n-1)p""! 0 —-d©
0 d, O p"! a, B,

2n+1)AY n(2n—1)AY 0 AW p"
0 AP (1-Gpa,p" (1-G)B.p"

n

where

d*) = 2n? +(1£2v )n+1xv)], p=—t, Go=—-

, AP =@ O 26  (n-D[B-4vy)n+2-2v,],
RO GO

Pl
AP =42+ G2 e A — Gm”A—”—d*(O), a, =(n-D2n+1), B, =m—-1)n+1)2n+3).

Let us expand the determinant (23) and write it as an expansion in powers of the variable G,
0 1 2
A, =19+ IVG, + 1P G,
where

19 =~ n(n+2)*2n-12n+ DB, p*"" —a, (n+2)2n+1)d, Od 7 p>+ 4

+a, Bn(n+2)*2n-1)2n+1)p* ! +a, (n+2)2n+1)d Va0 +
+a,(n+2)2n+1)d;Od; O p*? 4 n(2n-1)(n+2)*2n+1)B,p*" -
—a,n(n+2)*2n-0)2n+1)B,p*" " —a,(n+2)2n+1)d;Od; O p* |

+(1)
IV =, n(n+2)*Cn-)Q2n+D)B,p*"" —a,n(n+2)2n-1)2n+1)4, % P

n

A (0)
+a,(n+2)2n+1)d,” = s dy O o7 —a, (14 2)2n+ D(n=1)(A, O +2)d; 0 > —
d+(1)
—a, B,n(n+2)*2n-1)Q2n+1)p*"* +a, f,n(n+2)2n—1)(2n + 1)% P4

d +(1)
+a,(2n+)d; d, FRURLS (n+2)2n+1)d O (n-1)(A;© +2) -

n

(
-a, (n+2)(2n+l)d+(0)d (0) ant2 _ o (l’l+2)(2n+l) d+(l)d (0) 4n+2
+(1)

—a,n2n-1)(n+2)*2n+1)B,p>"" +a,n2n-1)(n+2)2n+1)p, dy <1) P

+(1)

+a,n(n+2)*2n-12n+1)B,p"" " —a,n(n+2)2n-1)(2n+1)A, Z ) P

n

(19)

(20)

(e2))

(22)

(22)

(23)

24

(25)
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a o
+a,(n+2)2n+1)d; Vd,; 0 p*" ! —a, 2n+1)d; Od, ﬁ o>, (26)

+(1 - 0)
19 =, n(n+2)2n-1)2n+1)4, AT 1 p? 3 g (n—1)(n+2)2n+1)(A, Y + 2) d*m P -
d+(1 +(1)
—a, B,n(n+2)2n-1)(2n+1)—"— AT P v a, (n-1)2n+1)d (A +2)) A"

A © a0

+(1)

+a n(n + 2)(2” l)(ZI’l + l)ﬁ (1)

2n-1 d+(1) 2n-1
P +a,,<2n+1)d;<°’d;(°>ﬁp 27)

Theorem 1. The multiparameter determinant A, (23) for all values of the parameters G; >0, v, €[-1,0,5)
(i=0,1), pe(0,1), and an arbitrary natural number n > 2 is positive. Moreover, the inequality holds
A, > Gly(n* =1’ n(2n+1). (28)
To prove the theorem, we first prove a new classical inequality.
Lemma 1. For p €[0,1] and an arbitrary natural number n , the classical inequality holds
41— p*r p23 L 5812y s (o 1y 2n43)(pP Tt =22 4 213y (29)

Proof of the lemma. Let's factorize the expression
4(l_p2n—l _p2n+3 +p4n+2)_(2n_1)(2n+3)(p2n—1 _2p2n+1 +p2n+3) —
2n=2  2k+2
=(1-p)* |43 p' Y pF —@n-D2n+3)p™" (Hp)z}.
i=0 k=0

Let us prove that the expression in square brackets is non-negative. Since (1+ p)> < 2(1+ p?), it is actually sufficient to
prove the inequality

=2 2k+2
23 00 P —@n-1@2n+3)p*" 1+ p7) 20. (30)
i=0 k=0
By replacing the summation indices in the product of series, it can be represented as
2m-2  2k+2 2n-2 2142
DI —Z(m+l)p +@n-1) > p"+ Z An+1-m)p™ . (31)
i=0 k=0 m=2n-1 m=2n+3
We perform the identity transformation of the expression that is included in the left side of the inequality (30)
2n=2  2k+2 2n-2
2 P Y P = @n-1@n+3)p" 1+ pM) = Y mm+ )| p" (1= p)=p* (1= p) |+
i=0 k=0 m=1
12020 -0 p7 (1= p)= " (1= p) |- @n -1 P77 (1= p) - " (1= ) |. (32)

All expressions in square brackets in (32) are non-negative at p €[0,1]. In addition,

[P (1=p)-p> 1= p) |2 (1= p)- P (1= p) |

Therefore, the inequality
-2 2k+2

23 00> P —@n-1@2n+3)p™ 1+ p7) 20, (33)
i=0 k=0
holds, and the lemma is fulfilled with it.

Proof of the theorem. Let us prove that all coefficients / ,(li) (i=0+2) in formula (24) are either non-negative or
positive for arbitrary values of the parameters specified in the conditions of the theorem. Let us transform / ,(,0> to the fol-
lowing form

10 =, (n+2)2n+1)| d;Od, O (1= " = p? 4 p" ) n(n+2)2n =D, (0" =207 + p7") |
Using the result of the lemma, we can estimate

I >a (n+2)2n-1)2n+1)(2n+3) Bd;“’)d;“’) —n(n+2)(n-1)(n+ 1)} P 1= p*)?.

The expression in square brackets can be written as:
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%d;(o)d;(o) —n(n+2)(n=D)(n+1)=[n* + 1+ 2v)n+1+v,1[n* + (1 =2vy)n+1-v,]—(n* + 2n)(n* ~1) .

The smallest value of the previous expression as a function of the parameter v,, on the interval v, €[-1;0,5) is taken at

v, =—1 and it is equal to zero. Therefore,

19 >0. (34)
In addition, the inequality
|:dn+(0)dn—(0) (1_p2n—1 _p2n+3 +p4"+2)—n(n+2)(2n—1),3,, (p2n—l _2p2n+1 +p2n+3 )J >0. (35)
is proved.
Now let's convert the coefficient 7, ()
1(1) =a,(2n +1) n( [d*(o)d O p2nl _ p2n=3 | pine2y

n

4+
—n(n+2)2n—-1)p, (p2n—1 _2p2n+l +p2n+3)]+a Qn+)dn d, d+(0)d (0)( 2n-3 p4n+2)+
AL

+a,(2n+ 1){(;1 D(n+2)d; QA Q +2)0- p* )+ (n+2)d Vd O (T - p* )+

(
tn(n+222n—-1B,(p* " —2p¥ 4 2n+3)+(n+2) d+<1)d O (23 _ pine2y |
Due to inequality (35), the first term of the previous formula is nonnegative, and all the others are positive.
The coefficient 7*) can be written as:

+(1) (0)
I® = a,n(n+2)2n-1)2n+1)4, Z &0 P (1= p?) +a, (n=1)(n+2)2n+1)(A, <°>+2) d*“’ 3y
0 0 dm) 0 0 d ( 1 0) y4n+2
+a, (n-1)2n+1)d (A >+2)] L, Qn+1)dOd;© AT p "ta, (n+2)(2n+1) d“ )d ;O ptrt

I’l n

From this expression of the coefficient / ,52) it follows that all its terms are positive and, as a consequence,

d-®
1D > a,2n+1)(n-1)d; O (A;® +2)] A” =

n?+(1+2v)n+1+v,
B-4v))n+1-2v,

=4(n-1)?Q2n+1)*[n> + 1+ 2v)n+1+v, [3—4vy)n+2-2v,]
The minimum value of the last expression at v; €[-1;0,5) (i =0,1) is equal to

2 —
An-D2Cn+ )20t +2n+3/2](n+ D "2 s (0 —1)*n(2n+1),
Tn+3
which finally proves the theorem.

Theorem 1 makes it possible to reasonably construct an exact solution to problem (1) — (3).

Theorem 2. If the series
017 enl 17D, (36)
converges and external load "
F(0)=2G, S 11 B, (cos 038, + 1l (cos )z, .

n=0
acting on the surface I, of the sphere Q, UQ_1, is balanced
fp(f©@).e)ds =0, (37)
Lo

then there exists a unique solution to problem (1) — (3) up to the rigid displacement vector, which has the form
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Gr.0) = {UO (r,0), R <r<Ry, a9

U,(r,0), 0<r<R,
and belongs to space C>(Q,UQ)NC (Q,UQ)NCQ,UQ,). Vector functions U,,U, are given by formulas (4),
().

Proof of the theorem. Let us analyze the solution system of equations (19) — (22) separately for n =0, n=1 and
nx2.

For n =0 there are no equations after equating the coefficients for Pol = 0, therefore, we have only three equations

—al'y +(4vy —2)al) = (4v, = 2)b, ., (39)
2“1(,18 -2+ 2V0)a§?3 ==Gy(2+2v)b,, (40)
—(2+2vy)asy +2p%al) = £ @1
System (39) — (41) has a unique solution

Loy A Lo, VA0 4 f0

0) _ 1 0 M _ | 0 3 0 3
as=—|1+G —, a;4 =—(+vy))| 1+G = + R 42
2,0 [ 102_4‘/1]2A0 1o =—(1+vp) 102_4]/1 ZAO'D 5 P (42)

1 1+v, |/ ) 24y L4y, ) £
byyg=——| -(+vy)| 1+G ! 0 53420 S 01 1+G, 1 |Jo , 41

20 2—41/[ ( 0)( 1"2—4‘/IJ2A0’) 2 P T 2man T 2w 24, @0

where
— 3 1+ Vi 3
Ay =(1+vy)A-p)+——Gp[l+vy +(2—-4vy)p ]1>0.
2-4v,
Since the solutions szo (r,0)=0, Wl,_o (r,0) =0, then the coefficients a% , a1(,%) and b, can be chosen arbitrarily.

The resolving system for » =1 has the form

P_lal(,?) +2(4vy — 1),0“2)1) - 2a1(,11) -(4- 4‘/0)“51} = b1,1 +2(4v, - 1)b2,1 > (42)
plal) +(6-4vy)pall) +afy +(4vy =3)al) = by, +(6-4v)b,,, (43)
6“1(,11) +(4-2v, )ag? —4(1+v, )pagf)]) =—4G (1+v))b,, (44)

_3‘11(,11) +(1- 2‘/0)“21) +2(1+v, )Pag,)l) =2Gy,(1+v)by, (45)
6(1-vy)p’as) = 17 +2 /7, (46)

“2(1+vy)as) +3ptal) + p*af) = (A7 = O)/3. (47)

Note that the statics condition (37) for the external load leads to the following relation:

£ +2/9=0.
Then from equation (46) it follows that a(sz =0. Two equations (44), (45) are proportional, so one of them must be
eliminated. There remains a system of four equations (42), (43), (45), (47) with respect to the unknowns al(,ll) , al(g) , ag?l) ,
by . The variable b, is free and can take on any values. The term with it in the general solution corresponds to the rigid

displacement vector. We fix the center of the sphere and then 5, =0. After substituting into the previous system

ag]) =0, b; =0 and simplifying, we obtain

by = p7lal) 4 pal) (48)

a)) +[l—%(6—4v1)}plafﬁ> +40 —v)pal) =0, (49)

3aj) —% Gio2+21)p"'a)) +[2+2v = Gyy (2+20)]pay) =0, (50)
3p%al) —2(1+v,)as) = %( 1= (9. (51)
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System (48) — (51) has the determinant
1 {1—%(6_4‘/1)} P 4vi—vo)p

A=]-3 _%G10(2+2v1)p‘1 [2+2v) =Gy (2+2v))]p| =

3p* 0 “2(1+v,)
12 8-12
(1) S (1 4)+EG10(1+V0)(1+V1)p_1+6G10 Y0 (14+v)p*. (52)
Formula (52) shows that the determinant A1 is positive. Therefore, the system (48) — (51) has a unique solution
al) = (K = [~ 120)(14v) + G B 120)(14v))] (53)
1
2 B

al = —3T(fl( ) A1+ 6v, = 5vy - G (1+ V)], (54)

r - —V r
af) = (K = fO)4=6% + G+ w)] o7 by === (1 = ). (55)

1

Now consider the resolving system at n > 2. Since by Theorem 1 the determinant of the system is positive, the sys-
tem has a unique solution, which looks like this:

In —

() _ ¢ (0)
afl) = X I, AP A 4 (1 Gy layn(2n DB, AD (07— ) -,y A p ) ¢

”) Q)
+f"+(Z—+)f"(1 —G)a,n2n-DAPd O o172 4 g p(n+2)2n—1)AW pT | (56)

n
0

o :_fn(r)—”fn( )
2,n A

(r) (0)
L O (1 Gy e, 2n DAL 7 4 0+ D2+ DA 9, (57)

n

(1-Gyp)a, 2n+1)B,AY (p" 2 = p") -

n

) ©
a® =L~ - Ui [0+ 1)BAPAD (1= Gy )2n + D BAC O 4 ] ¢

n

") L na1) £O
+%[(2n + 1)A512)A£l3)dn+(0) + (}’l + 2)(2n + I)Aflz)Agf),Oan 4

n

H1=GigIn(n+2)2n=D2n+ DA,AP (07 = p™) |, (58)
0 f(r) f(H) o . o
al) =21 (g 2n+DAPAY - (1-Gyp)ar, @n+ DAY d, O p* -
(r) ©)
_W(l_Glo)ann(”+2)(2’1—1)(2n+1)A;3)(p2"_1 _p2n+l) ] (59)

From formulas (56) — (59) and Theorem 1, we obtain estimates of the coefficients of the constructed solutions (4),
S)atn=>2

1 9 -2 1 -1 9 -2 0 -1 0
lal) < C (£ 1 +n | 12 Dp" 2, 1l Ik Con” (£ 140 £ D" 16 (< G~ (£ 140 £19 )
0 -2 0 0 -2 0 -2
[a) |< Cun 2 (| 7 [+0 ] 2D 1y, < Csn( £ 140 ] £2Dp" 2, by, < Co( £ 1+0] £ 10"

where (C,)S_, are positive constants that do not depend on . These estimates ensure absolute and uniform conver-
gence of the series in formulas (4), (5) in the sphere up to its boundary, as well as the fulfillment of the condition
UeC*(Q,UQ)NC'(Q,UQ,)NCQ,UQ,). So, the theorem is proven.

Computer experiment. Problem (1) — (3) was solved numerically under the following conditions: the ball material
was chosen to be steel with elastic constants G, =82 GPa, v, =0.28, the inclusion materials were chosen to be brass

(G, =35.2 GPa, v; =0.35) or aluminum ( G; =26 GPa, v, =0.34).
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The first type of load. The external load on the surface of the sphere is given by a vector function
f(0) =—osin geé. (it is automatically balanced). Fig. 1 shows the distribution of normal stresses on the surface of a
brass inclusion depending on the relative size of the inclusion p =R, /R, . Naturally, the maximum modulus of com-

pressive stresses on the surface of an inclusion act in its equatorial region, and they are greater the larger the relative size
of the inclusion. At the poles of the inclusion, on the contrary, the greatest modulus of stress is observed at the smallest
relative size of the inclusion.

G,./C
1.5 3.0 0
0.0 -

p=0.8 p=0.2
0.22 /

-0.44

-0.88

Fig. 1 — Stress graphs on the surface of the brass inclusion. The first type of load.

Fig. 2 shows the distribution of normal stresses on the surface of an aluminum inclusion. The external load is the
same as in the previous case. The nature of the stresses remains unchanged, and the absolute values of the stresses
change by a small amount. A fundamentally different situation is observed when the materials of the inclusion and the
outer sphere are interchanged. Fig. 3 shows the graphs of normal stresses on the surface of the inclusion when the mate-
rials of the sphere and the inclusion are aluminum and steel, respectively. Now the maximum modulus of compressive
stress is observed at the smallest ratio of the radii p = R,/ R, of the inclusion and the sphere.

G,./6
0.0 1.5 3.0 0
: o,/6 g
p=0.8 p:0.2 0.0 13 30 E
-0.16 -
p=0.4
-0.32 £
-0.48
-0.64
-1.5
-0.80
Fig. 2 — Stress graphs o, / o on the surface of an aluminum Fig. 3 — Stress graphs o, / o on the surface of a steel
inclusion. The first type of load. inclusion. The first type of load.

The second type of load. Fig. 4, 5 shows the distribution of tangential and normal stresses on the surface of the in-
clusion (inclusion material is brass) under an external load on the surface of the sphere, which is described by the vector

function 4}7(6’) =o[3sinfcos e, + sin’ 6é,] . Unlike the first type of load, each component of ]7(19) is not balanced, but
the entire vector satisfies the static condition (37). The tangential stresses and the moduli of normal stresses increase
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with increasing relative size of the inclusion. The nature of the normal stresses differs from the previous case and is de-
termined by the peculiarity of the external load. With a large relative size of the inclusion, a region is observed on its
surface in the vicinity of the poles where the sign of the normal stress differs from the sign of the load.

The practical convergence rate of the method is shown in Tables 1, 2 using the example of calculating normal and

tangential stresses on the surface of the inclusion at p = 0.8 (the second type of load). Here n_,, (convergence parame-

max
ter) is the upper limit of summation when replacing infinite sums with finite ones. The lowest accuracy is observed when
calculating o,.(0)/ o at n_, =30.Itis equal to 0.05 %.

a./c

p=0.8
0.66 N\ S

p=0.6 /0
0.44 LN -

0.44

\

0.0 15  3.0[/7%

0.22
-0.22 4

-0.44 \\\_///
\ / 0.0 1.5 30 9
-0.66 N

Fig. 4 — Graphs of stresses o,/ o on the surface of the inclusion.

Fig. 5 — Graphs of stresses 7,, / o on the surface

The second type of load. of the inclusion. The second type of load.

Table 1 — Practical convergence of the method when calculating ¢,.(6)/ o, p=0.8

Y 0 /6 73
30 ~0.10743 0.69313 0.87618
40 ~0.10752 0.69314 0.87618
50 ~0.10753 0.69314 0.87618

Table 2 — Practical convergence of the method when calculating 7,,(68)/ o, p=0.8

Mpax VO /6 /3 /2
30 0.50210 0.45777 0.40011
40 0.50210 0.45777 0.40011
50 0.50210 0.45777 0.40011

Prospects for further research. The results obtained in the work can be applied to solving a number of problems
important for practice: on elastic space with a spherical layer, on a layered piecewise homogeneous sphere, on a sphere
with an inclusion under the action of concentrated forces. A separate direction of research is associated with non-
concentric spheres and spherical heterogeneity.

Conclusions. For the first time, an exact analytically justified solution of a classical problem of the theory of elas-
ticity — the second axisymmetric boundary value problem in the general formulation for a sphere with a concentric
spherical inclusion — was obtained using the Fourier method. The justification for the solution of such a problem and the
establishment of its solvability class by the usual Fourier method is based on the analysis of a solvable algebraic system
of the sixth order with coefficients that depend on five independent continuous parameters and one discrete one. The
general solution of the problem is given in the form of series in terms of axisymmetric vector basis solutions of the Lamé
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equation for a sphere, constructed by the authors in one of the previous articles. After transitioning to stresses and satis-
fying the boundary conditions, a solution system of the above form is obtained. When analyzing the system, a lower es-
timate for the modulus of its determinant was found for the first time, from which not only the condition for the unique
solvability of the system follows, but also estimates of the solutions of the system itself. When estimating the determi-
nant, a new classical inequality was proved for one continuous and one discrete parameter. The next step was to prove a
theorem about the conditions that must be imposed on the vector of the external load applied to the surface of the sphere,
which ensure the existence of a solution to the problem in a certain class of functions. In the numerical implementation
of the solution to the problem, two types of loads on the outer surface of the sphere were considered, which satisfy the
equilibrium condition. In the numerical implementation of the solution to the problem, two types of loads on the outer
surface of the sphere were considered, which satisfy the equilibrium condition. A computer experiment was conducted
with three materials of the ball and the inclusion: steel, brass, aluminum. Graphs of normal and tangential stresses on the
surface of the inclusion were obtained, their parametric analysis was performed depending on the geometric and me-
chanical parameters. The practical convergence of the method was investigated.
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