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STRICT JUSTIFICATION OF THE FOURIER METHOD IN BOUNDARY-VALUE PROBLEMS OF
THE THEORY OF ELASTICITY FOR A SYMMETRICALLY LOADED TRANSVERSALLY
ISOTROPIC OBLATE SPHEROID AND ITS APPLICATION TO A HOLLOW SPHEROID

For the first time, an exact, well-founded solution by the Fourier method of the second axisymmetric boundary value problems of the theory of elastic-
ity in the general formulation for a transversely isotropic oblate spheroid and a space with a spheroidal cavity has been obtained. The fundamental
problem of the justification was the problem of estimating from below the modules of the determinants of the resolving systems for the internal and
external problems. The indicated estimates were obtained in this work. The complexity of estimating determinants is due to the fact that they depend
on nine parameters that are functionally related to each other, and in addition, two of them are included in the arguments of Legendre functions of the
first and second kind. The estimates made it possible to formulate and prove theorems about the solvability conditions of the considered boundary val-
ue problems in certain classes of functions. The obtained results are applied to the solution of the second boundary value problem for a transversely
isotropic oblate spheroid with a spheroidal cavity, the centers and directions of the axes of which coincide. An arbitrary symmetric balanced load is
given on the surfaces of the spheroid, which satisfies a certain condition for the convergence of the series of limit functions developed in terms of Leg-
endre functions. A feature of this problem for a transversely isotropic body is the impossibility of describing spheroidal surfaces with any geometry by
a single pair of spheroidal coordinate systems. This means that such a problem can only be solved using the generalized Fourier method. Its application
made it possible to reduce the original problem to an infinite system of linear algebraic equations. Thanks to the obtained estimates of the determinants
of simply connected problems, the Fredholm property of the system operator in a certain Hilbert space has been proven. The numerical results in the
considered problem are obtained in the case of a oblate spheroid with a circular crack. It is assumed that the surface of the spheroid is free of forces,
and a constant normal load is applied to the crack. Graphs of normal stresses in the crack plane outside its boundary, as well as the values of stress in-
tensity factor at its boundary, are presented. A parametric analysis of stresses and SIF depending on the geometric parameters of the problem was per-
formed. The practical convergence of the reduction method when solving an infinite system was investigated.

Key words: Fourier method, boundary value problem, transversely isotropic body, oblate spheroid, empty spheroid, justified solution, determi-
nant estimation, Legendre functions, Fredholm operator, circular crack, stress intensity factor, reduction method.

0. I. HIKOJIAEB, A. C. KPAHHHYEHKO

CTPOTE OBTPYHTYBAHHSI METOJY ®YP’€ B KPAMIOBUX 3AJJAYAX TEOPIi IPYKHOCTI
JUISI CHMETPUYHO HABAHTA’KEHOT'O TPAHCBEPCAJILHO-I30TPOITHOT'O CTUCHYTOT'O
C®EPOIJA TA IOTO 3ACTOCYBAHHSI /17151 IOPOKHBOT'O COEPOIIA

Brepiie oTpuMaHO TOYHHM 00IpyHTOBaHUH po3B 130K MeTogoM Dyp’e ocecuMmeTpruHKX(0ce) KpalfoBUX 3a/1ad Teopil IPY>KHOCTI B 3araibHii mocTa-
HOBIII ISl TPAaHCBEPCAIIBHO-130TPOIIHOTO CTHCHYTOTO cepoina i mpoctopy 3i chepoinanbHOI MOPOKHUHOK. [IpHHIMIOBOIO TPOOIEMOI0 OOIPYHTY-
BaHHs CTajla NpobiieMa OLIHKH 3HH3Y MOJYJIIB BU3HAYHHKIB PO3B’SI3yBaHHX CHCTEM UL BHYTPIIIHBOI Ta 30BHINIHBOI 3a1a4. Y w1iif poboTi oTpuMaHo
BKazaHi oriHku. CKJIQJHICTh OL[IHIOBaHHS BU3HAYHHUKIB MOB’s3aHa 3 THM, 1[0 BOHHU 3aJI€XKaTh BiJl B’ SITH MapaMeTpiB, siKi (YHKI[IOHAJIBHO MOB’sI3aH1
Mik c00010, 10 TOTO %, JBa 3 HUX BXOJATh B apryMeHTH GyHKIiH Jlexanpa nepruoro i gpyroro poxy. OImiHKH AaJi 3MOTy c)OPMYIIIOBATH 1 JOBECTH
TEOPEeMH PO YMOBHU PO3B’SA3HOCTI PO3MIIHYTHX KPalOBHX 3a/1ay y MeBHUX Kiacax (yHKIid. OTpuMaHi pe3ysIbTaTH 3aCTOCOBAHO 10 PO3B’sI3aHH APY-
roi KpaifoBOi 3aja4i [l TPAHCBEPCATbHO-130TPOIHOTO CTHCHYTOTO cdepoina 3i cepoinanbHOK MOPOXXHUHOK, IEHTPH 1 HAIPSIMHU OCeil SKuX 30ira-
10Thesl. Ha noBepxHsix chepoina 3ajaHo A0BUIbHE CHMETPHYHE BPIBHOBaXXEHE HABAHTAXKCHHS, SIKE 3aI0BOJIBHSIE TIEBHY YMOBY 301)KHOCTI psIIiB rpaHH-
9YHUX (QYHKLIH, po3BHHEHHX 3a (yHKuismu Jlexanapa. OcoOnuBICcTIO i€l 3a1a4i 1JIsl TpaHCBEPCATbHO-130TPOIHOIO Tija € HEMOXJIMBICTD NPU Oy /b~
SIKi reomeTpii cepoinanbHUX MOBEPXOHb OMMCATH iX OJHIEI0 Mapoio chepoifanbHUX CHCTEM KoopauHaT. lle o3Hawae, 1m0 Taky 3ajady MOXKHA
PO3B’SI3aTH TilIbKU y3aranbHEeHHM MeTozioM Dyp’e. Moro 3acTocyBaHHs Jajio 3MOTY 3BECTH BUXIIHY 3a/a4y 0 HECKIHUEHHOT CHCTEMH NiHIHHHUX anre-
OpaiuHKUX piBHSAHB. 3aBISKA OTPHMAHHM OL[IHKAM BH3HAYHHKIB OJJHO3B’SI3HHX 33124 JOBEICHO (PEaroibMOBICTh OllEpaTOpa CUCTEMH B IIEBHOMY Ti-
np0epTOBOMY IpocTopi. UncenbHi pe3ynbTaTi y po3riIsiHYTiH 3a/1a4i OTPUMAHO y BUIAJKY CTHCHYTOTO chepoiza 3 KpyroBoo TpillMHO0. BBaxkaeTbcs,
1110 MOBepXHs cepoina BUIbHA Bijl 3yCHIlb, a IO TPILMHU PHUKIIAJICHO CTajle HOpMallbHe HaBaHTaXeHHs. HaBeeHo rpadiku HOpMaIbHUX HAIPYXECHb
B IUIOIIMHI TPIlMHY 11032 il MEXKEr0, a TAKOX BEIHYMHU KOe(]illieHTiB iHTEHCUBHOCTI HanpyxeHb Ha 1i Mexi. [IpoBesieHO mapaMeTpu4HHMii aHANi3 Ha-
npyxenb i KIH B 3anexHOCTi Bii reoMeTpuuHUX nmapaMeTpis 3aaadi. JJOCHiUKeHO MpakTHYHY 301KHICTH METOLY PEeayKLil NpU PO3B’s3aHHI HECKiH-
YEHHOI CUCTEMH.

Kimouosi ciioBa: meron ®yp’e, kpaiioBa 3a1aua, TpaHCBEPCAIbHO-130TPOIHE TiJIO, CTUCHYTHIT cdepoin, mopoxHiil cdepoin, oOrpyHTOBaHHI
PO3B’S130K, OIIHKa BU3HA4YHMKa, GyHKUii JIexanapa, onepatop Opearoiabpma, Kpyroa TpiliuHa, KoedilieHT iHTEHCMBHOCTI HANPy>KeHb, METO/ PEAYK-
wii.

Introduction. In the modern world, more and more attention is paid to the creation of new materials with specified
physical and mechanical properties, which has led to the widespread use of composites and anisotropic materials in vari-
ous fields of technology — from aviation and space to biomedical. Transversely isotropic materials, whose properties are
different in a certain direction and in a plane perpendicular to it, have become particularly popular. Such materials effec-
tively simulate real engineering systems, in particular composite and reinforced structures. At the same time, cracks, in-
clusions, and other inhomogeneities occur in such materials for technological or operational reasons, which significantly
complicates the analysis of their strength and reliability. An urgent need for high-precision mathematical modeling also
arises when creating nanostructures. Here, local approximate models do not provide a complete and accurate picture of
the strength characteristics of the relevant materials. We emphasize that mathematical models of the stress state of com-
plex bodies are usually based on known solutions of boundary value problems of the theory of elasticity for classical
simply connected bodies. At the same time, the mathematical justification of the constructed solutions is of fundamental
importance, since this is a key element not only of the theoretical rigor, but also of the practical certaintence of the ob-
tained models. Modern computing technologies allow the implementation of numerically complex analytical models
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however, only reliable mathematical foundations can ensure the correctness of modeling results.

Review of previous research results. The first solutions to problems of the theory of elasticity for bodies with
spheroidal surfaces appeared in the first half of the 20th century in the works of the classics. H. Neuber published a
monograph [1] in 1937, in which he considered bodies with notches. In it, he formulated a number of concepts and no-
tions for the approximate calculation of stresses in the vicinity of notches on the boundary of an elastic body. The con-
cept of the stress concentration coefficient was introduced as the ratio of the nominal stress to the maximum in the vicin-
ity of the notch, and the law of the stress gradient was postulated, according to which a sharp increase in the stress
around the notch leads to their significant decrease at the edges of the highly loaded zone. This made it possible to ob-
tain approximate formulas for stresses in the vicinity of notches of various shapes in flat and spatial bodies, in particular
for spheroidal notches. Ten years later, M. A. Sadowsky and E. Sternberg [2] developed an approach using curvilinear or-
thogonal coordinates and obtained an exact analytical solution for the stresses around a triaxial ellipsoidal cavity in an
infinite elastic body under simple loads at infinity. The paper presents a closed-form solution in terms of elliptic Jacobi
functions for an arbitrary triaxial (not only spheroidal) cavity. Then R. H. Edwards [3] in 1951 considered the problem of
an elastic body containing a spheroidal inclusion under a uniform axial load. He showed that for a spherical inclusion the
stresses and strains inside it remain uniform even if the elastic modulus and Poisson's ratio of the inclusion differ from
those of the matrix. This unexpected result was later generalized by J. D. Eshelby. In his classic work [4] Eshelby devel-
oped the method of equivalent eigenstrains and showed that for an ellipsoidal inclusion a constant eigenstrain gives rise
to a uniform field of stresses and strains inside the inclusion. A. /. Lur'e in his monograph [5] proposed a method for
solving the problem for an elastic space with an ellipsoidal cavity based on Papkovich — Neiber potentials. However, a
later analysis by Xu, Zhao, and Wang [6] showed that the harmonic functions chosen by Lur'e lead to an unsolvable al-
gebraic system. These authors used the Eshelby equivalent inclusion method to construct a correct solution to the prob-
lem with an ellipsoidal cavity and wrote out new Papkovich — Neiber harmonic functions that satisfy the boundary con-
ditions on the surface of the cavity. Yu. M. Podilchuk in his monograph [7] constructed exact analytical solutions of the
Lamé equation for the interior and exterior of prolate and oblate spheroids by the Fourier method by choosing harmonic
functions in the Papkovich — Neiber representation. In one of Podilchuk's works, the stressed state of a medium with an
absolutely rigid ellipsoidal inclusion (the limiting case of given zero deformations in the inclusion) was analyzed. His
other work [8] (jointly with V. S. Kyrylyuk) investigated the state of an elastic body with an ellipsoidal cavity according
to the polynomial law of loading at infinity. Later, the same ideas were used in constructing exact solutions for trans-
versely isotropic spheroids [9]. The construction of exact analytical basic solutions of the Lamé equation for spheroids
was first made in [10]. For transversely isotropic spheroids, similar solutions were constructed in [11]. The problem of
substantiating exact solutions for isotropic and transversely isotropic spheroids was first posed and solved in [12, 13]. In
[14], a general three-dimensional analytical solution of the problem of a transversely isotropic space containing a spher-
oidal cavity with given asymmetric displacements on the surface of the cavity and vanishing stresses and displacements
at infinity is presented. The approach is applied to obtain a solution to the problem of a transversely isotropic space con-
taining a perfectly rigid spheroidal inclusion, where the space at infinity is subjected to uniform tension in the direction
perpendicular to the axis of elastic symmetry of the material. In the article [15], the problem of stress concentration
around a triaxial ellipsoidal cavity in transversely isotropic materials was solved using the Eshelby equivalent inclusion
method. The authors of the work [16] H. Amstutz and M. Vormwald demonstrate a modern engineering approach to the
analysis of the stress state in the vicinity of an inclusion in isotropic space. An elastic inclusion in the form of prolate
spheroid under axial tension was considered and an analytical solution was constructed, based on the solution for the
cavity, in which the displacement in the vicinity of the cavity was obtained by direct integration of the formulas for the
connection between deformations and stresses. In the article [17], the stress concentration problem for an elastic trans-
versely isotropic medium containing an arbitrarily oriented spheroidal inclusion (inhomogeneity) is solved. The stress
state in elastic space is represented as a superposition of the main state and the perturbed state caused by the inhomoge-
neity. The problem is solved using the method of equivalent inclusions, the triple Fourier transform in spatial variables,
and the Green's function for an infinite anisotropic medium.

We emphasize that all the listed works do not consider the problem of substantiating solutions to the second
boundary value problem in the general symmetric formulation for a transversely isotropic compressed spheroid and a
space with a spheroidal cavity.

Statement of the external boundary value problem. Consider a three-dimensional space in which an arbitrary
point O and a cylindrical coordinate system (p, @, z) with the origin at this point are fixed. Next, we will consider two

transversely isotropic elastic bodies, the anisotropy axes of which coincide with the axis Oz . The regions occupied by
the bodies are denoted by

2 2
QF ={(p, , z):p—+z—>1},
d; di -

where d,/d, < min {\/l7 ,\/V2}s V1, V, are the positive roots of the equation

2 2 _
C11CagV” = (€11C35 = 261344 —C13)V +C33¢44 = 0.
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Here ¢; are the elastic constants of the transversely isotropic material of the bodies under consideration (they are all

considered positive). The system of equilibrium equations in the displacements of a transversely isotropic body in the
case of axial symmetry has the form

1 o 0%V,
| A +c V +(ci3+cyy)—==0, (1)
{11[2 pJ “o } 13 1 Ca4 op0z
o 1o o,
Cauly 33— Vo (o3 + ) — p——|=0. (2)
oz? P 5‘ 0z
Above (V,,V.) — are the components of the axisymmetric displacement vector in cylindrical coordinates,
2
A, = 68 + Py an axisymmetric variant of the two-dimensional Laplace operator in polar coordinates.
p> pOp

To describe the domains Q7 , it is convenient to use two oblate spheroidal coordinate systems {(efy, 7, (p)}Y | » the
coordinates of which are related to the cylindrical coordinates by the formulas

z
V Vs

Here ¢, >0 is the parameters of the spheroidal systems, gES €[0,o), 77, €[0, 7], @ €[0, 27] . Then the surface Q" is

p=c,ché sing,, =c,shé, cos7, .

given by the equation &, = £, where ¢,chE” = d,, \/Z c,sh&? = d, and on this surface 7 .= 77 .
Let us consider the second axisymmetric boundary value problem of the theory of elasticity for the system of equa-
tions (1), (2) in the domain Q" , when the load is given on the boundary of the domain 6Q*
a|§y 0 Cas Z[b(l)P(l) (cosij)é, +b,P, (cosﬁ)éz], (3)

1/2

where H = (all2 sin’ n+ d22 cos? 7)<, and at infinity the regularity conditions are satisfied. The conditions for the coeffi-

cients of the series (3) will be given later.

Construction of a solution to the external boundary value problem. In the article [11], general basis sets of
transversely isotropic displacements of canonical bodies in all curvilinear coordinate systems in which the variables in
the Laplace equation are separated are constructed. For oblate spheroidal coordinates, axisymmetric versions of such sets
have the form

175%;56) (C_?js’ ﬁ]s) = +(6) (ijs’ 77]5) u;:#(r?) (5]‘55 ﬁjs )]9 n= 05 17 ey S = 1’ 2 5 (4)

where

P, (ish&) ’

6 oz Cj3+Cyy
P, (x), 0,(x) — Legendre functions of the first and second kind; {€,, €.} — unit base vectors of the cylindrical coordi-

u;(ﬁ)(f,ﬂ):{Q"(lShf)} > (Cos ) ; V _e 0 9 ke i’ i :c“]/x——%’ s=12,

nate system. The displacements 175,(,6) are solutions of the system (1), (2), regular in the domains Q* . The displace-

ments (4) in coordinates have the following form:

k .
0 £(6)1 s, +(6) 5 \z —
vn (éjv’ 77]5) M (é:]s" 7715)@ _\/V—un (5]3" njs)ez H S—1,2, (5)

where

1,. z
u, (&, 7) = {Q'; (’Sh"f)}a‘l(cosﬁ) .
P, (ishé)

The stresses on the surface AQ" with the normal 7i: , which correspond to the displacement vectors

s’
+(6) (&, 52 1) » are calculated by the formula
_ - . 1
k. = RN
+erp —clsv—b)tha?")u;““(és,m)ep}. ©)
S
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We will look for the solution to the problem in the form of a series with external basis displacements (4)
2 o
P(p.2) =22 a, Vi 71s) (7)
s=1n=0
where {a;, }5’:?,;1:0 are unknown coefficients. Let us proceed in formula (7) to the surface stresses according to formula
(6), after which we satisfy the boundary condition (3). As a result, we obtain an algebraic system with respect to
{a, , y2 l.n=0 - After some transformations with the coefficients of the obtained system, we will have

C V +C —
Zabo 5 (iq,) =0, Zabo B o (ig,) = by ; ®)
=1 Ci3+Cyy
2
1
Y a, | S w100, ) - =2 D 007 ) | = nn+ B0, 021 ©)
s=1 \/T 044 d2
2
> ay, (k, +D0" (g, =b,, n=1. (10)

s=l1

Here and below marked ch&? =g, shé’ =g, .

Analysis of the resolving system for the exterior problem. The following theorem provides an analysis of the
solvability of system (8) — (10) and the conditions for the existence of a classical solution to the boundary value problem

1H-0).
Theorem 1. For v, #v, system (8) — (10) is uniquely solvable. For its determinant the estimate

— oV |i

o0 (g0 (igy)|, n>1 (11)

A&, 8|2

holds. When the condition

C3tcy dy

> nn|b" | +b, )< (12)
n=0

is met, there is a solution to problem (1) — (3) in the domain Q" by the Fourier method in the form (), which belongs to
the space C*(Q)NC Q).

Proof of the theorem.
First of all, we note that the first equation (8) guarantees the regularity of the vector function (7). System (8) has a
solution
a :iboﬁ i3+ , dy, :ibod—z G3 tCa4
’ g ep(va-v) 7 ¢ (v —v,)
To analyze the solvability of system (9) (10), we consider the determinant of this system

\/—n(n+1)Q (7))~ lc 2 dl oV ag)  (k+1)0Pg)
SLNERE T A St -
n(n+1)Q, (ig,) —1—2 1Q“’(zqz) (ky, + DO (i)

\/Z Cya
_(k1+1)(k2+1)Q(l)(191)Q(1)(1‘]2){”(”+1){1 AL Q("’z)} C”ﬂ[ L1 ]} (14)
G

(13)

Wi O @) v, 0 Giy) AR Y
Since, as was proved in [18], the function
1 0,(q)
W o (i)

is monotonically increasing, then both terms in curly brackets (14) have the same sign, therefore the determinant is non-
zero and the estimate (11) is satisfied. Then the system (9), (10) is uniquely solvable and its solutions have the form

o(v) =

620 0 k, +1 _ —¢, d _
ay, =-[0,P°(E.ET! {b,, {Z—énm +1)0, (1612)—6,11&leiQ,(,l)(1612)}—
—b,gl’n(nﬂ)(kz+1)Q,§”(i(72)}, n>1; (15)
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20 20 k +1 . —C, d —
ay, =AD& EDT S -b, | —=n(n+1)Q, (ig,)) - —2-L0V(ig)) |+
RS Ch  dy
+5Pn(n+1)(k, +1)Q,51>(i(71)}, n>1; (16)

Since for Legendre functions of the second kind the estimates are

d g _19.G@| __q _ v,
Wn+d, m+hg |0V(g)| (n+Dg (n+1yd,
then the following estimates follow from the obtained solutions and formulas (11), (17):
3 tc c 1 d ky, +1 . (ig5)
< C13 T Cu 44 (S - b, | 2 n(n+1)|Q(l) q_z | n
ar en—envi=v2 14,10 (g)| NS 10 (igy)|
_ 0] 1
¥ ‘1~ % i:|+ | b,(ll) |I’l(l’l+1)(k2 +1)} < Cln(| bn ll()nt )+ | bn |)

Gy 1O, (iq)) |

b+l _
< C3+Cyy  Cyy 1 if - 15, | 1t n(n+1) |Q(r1,)(1f1_1)| +
ar = vi-vld |0, (igy) | W 10, (iq) |
Cyn(|b" | (n+1)+]b, |)
10 (ig)) |

, 4>0, neN, (17)

(18)

| aZ,n

+MZ—1}+ 150 | n(n+1)(k, +1)} < (19)

Cy4q 2
where the constants C; are positive and depend only on s .
Now we can estimate the terms of the series (7) using estimates (17) — (19) and the uniform estimate
|0 shé)| g™
10 @)|  (chd)™

that follows from the integral representation of the Legendre function of the second kind. Therefore, we have

2 2

FH6) (E = FH6) (E =
>a, JAOCEL )| <D a,, 1O E 7, <
s=1 s=1

E>E" peN, (20)

OV (shé) || B (cos,) |
n(n+1)

IN
| MN
Y
3
—

2 n+l
. - ~ 4q
+10,(shE) || B, (cos i) || <D C(n| B | +1b, )[—~ j , @D
s=1 Chgs
where the constants C~‘S are positive and depend only on s .
Estimate (21) shows that when condition (12) is satisfied, series (7) converges absolutely and uniformly at

E > fs(o) and can be infinitely differentiated by terms in the domain (,ES > ggs(o) . The latter means that formula (7) speci-
fies a solution to the boundary value problem (1) — (3) in the domain Q*, which belongs to the class of functions
ct@HnciQr).

The statement of the internal boundary value problem and construction of its solution. Now let us consider
the second boundary value problem for the system of equations (1), (2) in a transversely isotropic oblate spheroid

2 2
- Pz
Q =5(x,p,2): =+—<I1
{ d; df
with boundary condition (3). We assume that the conditions formulated in the statement of the external problem are met,
and the load (3) is balanced. To describe the domain Q™ , we will use the two systems of oblate spheroidal coordinates
{(£,,7,, )}~ introduced above and the same notations.
We will look for the solution to the problem in the form of a series
2 ®
V(p9 Z) = al,OVl,_O(6) (fl > ﬁl) + Z Z as,nVSjn(ﬁ) (égv s ﬁq) s (22)
s=1n=1
where {q,,, a,, ﬁﬁ,nﬂ are the unknown coefficients. Let us proceed in formula (22) to the surface stresses according to

formula (6), after which we satisfy the boundary conditions (3). After transforming the coefficients in the Legendre
2,00

functions, we obtain an algebraic system with respect to {a; ,}i|
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2
1 _
)P (7.) - =929 pO 7y (= e D, n2 1 23)

Z 4
a s
S,n n K
521 Vs cy d,

2
>a,,(k, + )PP (ig,)=—b,, n>1. (24)
s=1

The boundary condition at n=0 is satisfied automatically for any q,, since the statics conditions lead to the
equality b, =0. In turn, this leads to the standard result for the inner problem — the solution of the problem is deter-
mined uniquely up to a rigid displacement.

Analysis of the resolving system for the interior problem. The following theorem provides an analysis of the
solvability of system (23), (24) and the conditions for the existence of a classical solution to the boundary value prob-
lem.

Theorem 2. For v, #Vv,, n 21, the system (23), (24) is uniquely solvable. For its determinant, the estimate

2

c33—C dy |vi—vy|
8,200, ) 2 BO (i) || B (i, ) | -1 =g S
culaztey) d; maX(Vl ,Vz)

(25)
holds. When the condition
S nn B |+, ) <=0 26)
n=0
is met and the load (3) is balanced, then there is a solution to problem (1) — (3) in the domain O~ by the Fourier meth-
od in the form (22), which belongs to the space c? @HN C! (E) .

Proof of the theorem.
To analyze the solvability of system (25), (26), we consider the determinant of this system

k +1 . C—Cp d — —
=n(n+DF, (i) ~=—2 LRV ) (+ DRV )
—(2)6, 50 F0y _ \/‘71 Ca4 2 _
An (51!52)_1C i —cin d -
= n(n+DP,(ig,) ~——2-LEV(igy) (ky + DB (i)
\/Z Cy dy
L RG@) 1 R@) |,
Wi BV @) v, BV )
After some transformations, the determinant can be represented in this form

APNE, 8=

2
=P (ig )PV ‘1163 ~ 43 1 FGg) 1 FGg,) 1— i[L_l) 28
IR e C44>{"( {f B g B | T4 )

where o is Poisson's ratio in the isotropy plane. Note that from the relations between the elastic constants it follows that

=P,f”(z'c‘zop,f"a'az){n<n+1>(k1+1>(k2+1){ “ g kz)} 27)

cy 4,

the constant ¢;,c33 —¢f3 > 0.
Consider the function

s(v)= n(n+1)————— (29)
f
Let's check it for monotonicity. To do this, we find its derivative

dg¢(v) ___ n(n+l) 2p i pM i L | =0 29 )2 = 12
™ ; \/73[ e {q P, (iq)P, (lq)+[qq —qn(n+l)}[P" ()" —gqn(n+ [P, (iq)] }

It can be proved that the expression

(—i)*" {qun (iq) P (iq) + {aq -

2—_}[ POGDT —Ggn(n + DIP, ()] }

(n+1)
when n >1 is positive, i.e. @ <0, and the function ¢ (v) decreases on the semi-axis & € (0,) . Because
v
AP0 @&, &) = B i) B (i, )L{[avl) SO+ a—[i—i]} (30)
Caq(€13 +Cy4) dy\vi v,
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.1 . . . .
and the function — also decreases, then both terms in the curly brackets (30) have the same sign, so the estimate (25) is
v

correct. Therefore, the determinant A;(m (flo, 9220 ) for n>1 is nonzero. Then the system (23), (24) is uniquely solvable
and its solutions have the form (n>1)

_ =0 20« k, +1 — C—C d _ _
a, =[A,PEENT b, | 2= n(n+ 1P, (igy) ———2=L PV (ig,) |+ b n(n+ D)k, + DB (igy) p,  (31)
V2 Cyy  dy

_rA-(2)6F0 F0N1-1
ay, =[8,7"(&,6)] { b, { \/Z e dy
Given the estimate for Legendre functions of the first kind
i _ 4 PG| _ 4. 33)
Jend, nq; |POGg,)| ng,  nd,
from the obtained solutions (31), (32) and formula (25) the following estimates follow:

Ci3+Caq  Cyy 1 d, {| |[k2+1n(n+l)|P”(ﬁz)|+

S, (g - G2 G po <iq‘1)] +bOn(n+1)(k + 1Y (iq‘l)} . (32)

ar e~ vi—vald | PV ()| N | PV (ig,) |

_ (1) 1

+cll ‘12 i:|+|b,§1) |n(n+l)(k2 +1)}< Cln(| bn (|1()ni )+|bn |) (34)
Cy | P, (iq) |

o
jay ot a1 &, ikt IBE@DL,
ar ar—cp vi—vald | PO (ig) | N | PO (ig,) |

- (1) 1

L dy }H b,(l”|n(n+1)(k1+1)}<czn(|b” IGEINILY) as)
C | P, (iqy) |

where the constants C are positive and depend only on s.
Now we can estimate the terms of the series (22) using formulas (33) — (35) and the uniform estimate

| P”(I)(iShg) |< Ché gg<s§(0) neN
[E0@EnED| " (ng® ) =7 T

As a result, we have

2
<la,, VAV & 7)<

s=1

2
> a, V9.7,
s=1

n(n+1) ché,

where the constants C~‘S are positive and depend only on s . Estimate (36) shows that under condition (26) the series (22)

s=1

2 PO shéN | PV (cosi . ~ z . "
sZwm{' n UShe))I[B (0S| | p snE ) | Byeosiy) | < 36160 [ +16, D 2| . @6)
s=1

converges absolutely and uniformly at &, < efs(o) and it can be infinitely differentiated by terms in the domain ézs < ggs(o) .

The latter means that formula (22) specifies a solution to the boundary value problem (1) — (3) in the domain Q™ , which
belongs to the class of functions ctQHNC Q).

Transversely isotropic oblate spheroid with a spheroidal cavity. We use the results obtained above to solve the
second boundary value problem in a transversely isotropic oblate spheroid with a spheroidal cavity, which is under the
action of an arbitrary balanced axisymmetric load. We denote the domain occupied by the spheroid by Q , and the sur-
faces of the cavity and spheroid by I'; and I', . We assume that their centers are combined and are located at the point

O . We align the cylindrical system (p, @, z) with this point so that the axis Oz coincides with the symmetry axis of

the spheroids and the anisotropy axis. The surface has the equation
2 2
ot 67
d: d:
Ji2 Jil

where d;,/d;, < min{\/; , \/Z }, i=1,2. We will use the notation introduced above.

A feature of a transversely isotropic body occupying the domain Q is that its boundary cannot be described by on-
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ly one pair of oblate spheroidal coordinates, even when the surfaces (37) have a common focal disk. Therefore, the prob-
lem for the doubly connected domain of the considered geometry cannot be solved by the usual Fourier method, and it is
possible to do this only by the generalized Fourier method. To describe the domain € , it is convenient to use two pairs

of oblate spheroidal coordinate systems {(gZ o s (p)} related to cylindrical coordinates by the formulas

s,j=1>
p= ajyschggjys sinj; , z=4Jvsa;shg;  cosi; .

Then the surface I'; is given by the equation é s = §(0) where a; Schg(o) =d;,, \vsa;shS; EO d;, (the parameters

of oblate spheroidal coordinate systems, unlike the previous one, are denoted by a .5 » SO as not to confuse them with

elastic constants).
Let us consider the problem of determining the stress state of the above transversely isotropic body, in which the
cavity is free from stresses, and an arbitrary balanced axisymmetric load

FI7|§ 0 = ;;4 Z[b(l)P(” (cosip, )€, +b"P, (cosj, )& ] (38)

12
is applied to the outer surface. Here H, = (dzzjl sin’ 7, + a’22,2 cos? ﬁz) .

The conditions for the coefficients of the series (38) are given in (26). From a mathematical point of view, the
problem is reduced to solving the boundary value problem for the system of equations (1), (2) in the domain Q with the
boundary conditions (38) and

FV|§] 0 =0 (39)

Construction of a general solution to the problem and its reduction to a resolving system. We will search for a

general solution to the problem (1), (2), (38), (39) in the domain Q in the form

2 2
P(p.2)=3 3 A0 )+ 33 4D O, ). (40)
s=1 n=0 s=1 n=1
where AE’,} are the unknown coefficients that need to be found in the process of solving the problem. Here, the equilib-

rium of the load on the external surface of the body has already been taken into account according to Theorem 2. We
will solve the problem using the generalized Fourier method. For this, we will use the theorems of addition of basic solu-
tions (4), which are consequences of the general formulas obtained in [11]

Vo (&rsr i) = 2 8 g, a WO o ) » (41)
k=0
I;:-(é) (51 s 771 s) z g;r(66) (al,sﬂ (12 S)V k6) (52 s 772 s 2,sSh§~2,s > al,s H (42)
where
b4 n—p
n (a, i"Pe, &, (k+1/2)0(n/2+p/2+1/2)
€, ,,a,)= Y| = nrpi ) , 43)
Slay, ) T(n/2-p/2+40(p/2-k/2+1)T(p/2+k/2+3/2)
0 - e, e, (k+1/2)T(p/2+k/2+1/2) a, V" )
a ,a s) = 2 s
Enie s> @2 ST(p/2=n/24D(p/2+n/2+3/ DT (k/2-p/2+1)( ay,

1, n—-k=2p,peZ,
E =
"0, n—k=2p+l, pe’,
I'(x) is Euler's gamma function.

Let us transform the displacement vector V(p, z) to each separate coordinate system using formulas (3.5), (3.6).
As a result, we have

2 o 2 o
V(gl,s b ﬁl,s) = z z Aglr)tV;rrEtS) (éjl,s H ’71 K z z s,n g] 82 771 S)Z gk(66 (al,s > a2,s )As(,zk) > (45)
s=1n=0 s=1n=0
2 o 2 o
V(§2,s’ ﬁZ,s) = ZZAEZn)VS r(16) (52 s ’72 s)+ Z Z VSJrr(t6) (52 s 772 s)z gl-:(néG) (al L8 a2 9)A(1) (46)
s=1n=l1 s=1n=0

Let us pass in formulas (45), (46) from displacements to stresses on surfaces Fl and I', , using formula (6) for this.

After satisfying the boundary conditions, we obtain an infinite system of linear algebraic equations with respect to un-
known coefficients
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Zz1+<”’>A<” + Zﬂ’") Z 2 ay, a,,)4%) =0, n20, m=0;1, (47)
s=1 k=n
2
ngﬁ’”;A@ +Zr;§’",2 (G50 T )Z g (@ a )AL = [, n=1, m=0;1, (48)
where
— 1 1), —
sy _ K+l Q)| ¢y~ djl 0, i) +(0) _ o, )(lqj,s)
50, = n(n+1) S b G =Dy (49)
N P(g;)]  cu din | POGT,,) PG,

£V ==n(n+ b

n 2

0 0
fn():_br(l)'

Analysis of the resolving system. Let's transform the system to normal form

+(0) 1 1 A1
IO 12nQ()(qu1) 22: -1 gkn '(a A5, 2;)2(2) 1+an()(“111) Z ~(0) gkn (alw 2v);1(2) ~0. (50)
1,n A+(2)6 20 1,s,n (1) s,k +(2)(, 1,s,n (1) s,k T V0
(51,1751,2) =1 k=n BOU(qyy) (511#51 Dsa ke BU(gay)

D A1) (= 0) (1
m tlJrl(er()(lql,z) if(()) gkn (a“,az?) @ _ ;rl(n)Q()(lqlz)Zf(n gkn (a“, a)

2,n 2)6,£0 £0 Ls,n s,k 2)6 1,s,n
APELEN T IS B gyy) AP (511,512)521 o POg,,)

(1 +(66) p +(66)
4@ t22nP )(“121) Zfr(l) S Ehn (G558 5) o _ tz )("121) ZtJr(O) > B (alwaz,s)A(l)

AR =0, (51)

1,n 2)6 2,8,n N 2)6 2,s,n k
LOEENE TS O, @ ENER S a,
0 1
P( )(lCI21)t2( AR P(l)(lq )’2( LA 5
A6 A6 (52)
n (52,1 s 52,2) (52 1> ‘/;:2 2)
w 66 o 66
42 4 )(l‘h 1) < Z +(0) gl:(n )(al,s’aZ,S) 20 _ t21nP )(lq2 2) < Z +(1) g;,€1 )(al,saaz,s);la) _
2.1 2 6 2,8,n 1), — Jk 2)6 2,8,n 1), — kT
An‘ ) &80 7S gy T AP GG S TS oG
1) ~0 1 0) ~(1
P()(lq2 )tz()f( ) P()(lq )tz( )f() 53
AT A-(26 (53)
n (52,1»52,2) n (52,1752,2)
where
A A(l) /Q(l)(lql D A(2) _ A(Z) /P(l)(lq ).
Theorem 3. If conditions
a, shE” a <a shf(o) <a
(0 2,8 2,5 > "5 2,8 0 1, 2,s 15>
ay sh&? < o a, shE) > ) (54)
Ch§2 s 1,S > aZ,s ’ Ch§ aZ,s > al,x
are satisfied, the system (50) — (53) has a Fredholm operator in the space 12 .
Proof of the theorem.
To prove the theorem, it is sufficient to show the convergence of the series
‘ 2
1 - 66
ZZZZZ| Z(Pj)ﬂ ﬂ( )(lq23 p) t;(s,n‘])g;c—,(n )(al,s’aZ,s) <o (55)
2)6 1), .— B
0| A, (&1 55) 1 i, )
2
w o 1 1- 66
i Z z +(j) Q( )(lql 3- p) tl,g,nj)gk(n )(al,s’als) <o (56)
2)6 ’
s=1n=0k=n A;( ) (651,1351,2) Pk( )(lf]z,s)

where j=0,1; p,s=12.

First, we note that thanks to estimates (11), (17), (25), (33), we can estimate the factors of the common terms of the
series (55), (56) as follows:

1 1)/ —
|t2 o P( )(qu —p)| j tlJrEJJZLQ( )(lq1,3—p) + .
@6 (0) £9 o, w6, 50 =0 <¢n, =01 (57)
ISERERET A8 E)

From formula (42) follows the Parseval equality

£ 2L 2 = 2 2
I Sln’?z,sd’h,s Zg;(k%)(al,s:az,s)Qk(lShfz,s) P—
0 k=0

E )P (cos7
DB (eosii) o
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thanks to which we can record

Q (ISh§2 s
Z Z g+(66) (al,s , az,s) 0
=0 k=0 O, (g, ) | 2n+1

Let us emphasize that in Parseval's formula (§LS, 7)) and (fz,s, 7,,) are the coordinates of the same point. Let us sub-

1) Pk (COS ﬁl,s ) sin ﬁZ,sdﬁZ,s . (5 8)

2 raloshd))
‘0[Z=:| (lqls

stitute into the formula (58) 52’5 = ~2(f)s). In this case, the coordinate "31,; on the fixed surface is some function

ggl’s = ELS (g‘z s> 1.5) - The condition for the convergence of the series under the integral (58) due to the estimates (17),
(20) is the inequality

856007 ) > &) Vi, €[0,7]
or, which is the same,

min r:ly(ézb,nh»é”). (59)
772 s [0

Let us find the minimum value of the coordlnate in (59). From the formulas for the connection of cylindrical and
spheroidal coordinates it follows that

(ch&singty, /chE,, ) +(shE cosiy , /shé,, ) =(ay, /as, ).

whence
hE,, = (g3, —eos” i~ + (g3, —cos” iy — )’ +40°F3  cos iy, )/ 20 (60)
where @ =aq, ; /a, ;. Let us examine the right-hand side of formula (60) at the extremum. It can be shown that for « <1
sh’&"" =45,/ a”. (61)

In the same way for > 1
sh’" = g3,/ o (62)
Now the consequences of formulas (59), (61), (62) are the first convergence condition (54).

Therefore, by the first condition (54), the series on the left in (58) converges. It is not difficult to show that the con-
vergence remains for any additional factors in this series of the form n”, k? (p, g > 0). Therefore, taking into account
the estimate (57), we obtain (55).

For the series (56), a similar approach leads to the second convergence condition (54). Thus, the theorem is proved.

Remark: The convergence conditions of method (54) can be given the following geometric meaning;:

dyy, a3 <ayg, dyy, ay5<a,
d; < dyy >

VVsdaps ayg>ay, VVsdias Gy >ay .

The last formulas show that not only do the surfaces I'; and I',, as geometric objects, not intersect, but also do not in-

tersect the surfaces after the similarity transformation along the axis Oz with the coefficient 1//v, .

The problem of a transversely isotropic oblate spheroid with a circular crack. Let us illustrate the above re-
sults by the example of the numerical solution of the axisymmetric problem of the stress state of a transversely isotropic
oblate spheroid I', (37) with a circular crack I'y ={(p,z):z2=0, p [0, a]}, which is under the action of a constant

normal load. The boundary conditions at the crack edges are set as follows:
O.r, ==0, Tpor, = 0, Tozry, = 0, (63)

where 0., 7,., 7, are components of the stress tensor in cylindrical coordinates. The outer surface of the spheroid is

considered free from forces.
If we look for a solution to this problem in the form (40), then the unknown coefficients must satisfy the system
(47), (48) with the other right hand sides

Ztl m 40 +Zt (’”>ng<“>(a a, VAG = £, n=0, m=0;1, (64)
s=1 k=n
2 n
— 2 66 1
thﬁ”’,BAs( D+ 5N 6 a,a, VAN =0, n21, m=0;1, (65)
= s=1 k=0

where the coefficients for the unknowns are described by formulas (49), into which we must substitute g, =0, and the

right-hand side is f"™) = Op.00,10a] Cyy -
After numerically solving the system (64), (65) by the reduction method, it is possible to analyze, for example, the
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normal stresses that arise in the crack plane outside its boundary and are given by the formula
2

c < .
0 (9,0 s =~ Dk, 41X AN, (iWp 0 1) B (0) -
P —a s=1 n=0

I T
s 2) p) 2
—Cyu ) =2 AR (0P, (\/1_(,0/“2,5) ) (66)
s=1 a2,s_p

n=l1

/
6.(p,0)c
0.8 (p,0)

\( d2,1/a=2, dz‘z/a =8
/77
0.6

dz l/ﬂ,’=3’ d:gr‘ﬁ =8
0.4

dr1/a-4, d>2/4=8

02 M\

—

1.0 1.25 1.5 1.75 2.0 p/a
Fig. 1 — Distribution of normal stresses in the plane of the crack beyond its boundary.

Fig. 1 shows graphs of normal stresses o (p, 0),,., /a (66) depending on the relative sizes of the semiaxes of the

spheroid. Here, the symbol o * denotes the stresses that correspond to a crack in transversely isotropic space (the prob-
lem has an analytical solution in closed form). The graphs show that for a fixed size of the semi-major axis of the sphe-
roid, the stresses increase as the size of the semi-minor axis decreases. A different situation is observed for a fixed size
of the semi-minor axis. Changing the size of the semi-major axis has practically no effect on the magnitude of the stress-
es.

Let us also write down the formula for calculating the stress intensity factor at the crack boundary:

K, = lim 27n(p—-a)o(p,0).
p—a+0
Transition in system (64), (65) to dimensionless unknowns by the formula

A =992 7))

S, SN
Cyq
leads to the following formula for the SIF:
2 )
K. | (Nao) =z (k,+1D 4B, . (67)
s=1 k=1
Table 1 — SIF values depending on the relative sizes of the semiaxes of the spheroid
dy/a\d,y,/a 6.0 7.0 8.0
2.0 1.2382 1.2356 1.2336
3.0 1.1715 1.1694 1.1681
4.0 1.1506 1.1489 1.1479

Table 1 shows the values of the stress intensity factor depending on the relative sizes of the semiaxes of the sphe-
roid. A decrease in the SIF is observed both at a fixed size of the major semiaxis and an increase in the size of the minor,
and at a fixed size of the minor semiaxis and an increase in the size of the major. For comparison, we present the SIF of
a crack in transversely isotropic space

K./ (ac)=2/Jmr ~1.1284.
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Table 2 — Practical convergence of the reduction method

Hpax VO G 1.1 1.3 1.5 1.7 1.9
20 0.8021 0.2879 0.1608 0.1015 0.0665
30 0.8019 0.2873 0.1602 0.1012 0.0665
40 0.8019 0.2873 0.1602 0.1012 0.0665

Table 2 shows the practical convergence of the reduction method using the example of stress values o, (p,0)\o at
dy,/a=20, d,,/a=8.0, The number n,,

is equal to 4n,,, x4n,,. .

. specifies the reduction parameter at which the size of the reduced system

Prospects for further research. One of the directions of further research is the substantiation of solutions to the
equilibrium equations of transversally isotropic canonical bodies.

Conclusions. For the first time, an exact, substantiated solution by the Fourier method of the second axisymmetric
boundary value problems of the theory of elasticity in the general formulation for a transversely isotropic oblate spheroid
and a space with a spheroidal cavity has been obtained. Similar problems are relevant in local modeling of the stress
state of transversely isotropic bodies with cavities, inclusions, and cracks. The review of previous research on this topic
presented in the article showed that the problems of substantiating the basic boundary value problems for the above-
mentioned transversally isotropic bodies were not posed and not solved. However, ignoring this problem can lead to in-
correct results even in the works of classics, as shown by the authors of the study [6]. A fundamental problem of justifi-
cation, which could not be solved for many years, was the problem of estimating from below the moduli of determinants
of resolving systems for interior and exterior problems. The indicated estimates were obtained in this work. The com-
plexity of estimating determinants is due to the fact that they depend on nine parameters that are functionally related to
each other, and in addition, two of them are included in the arguments of Legendre functions of the first and second
kind. The estimates found made it possible to formulate and prove theorems about the solvability conditions of the con-
sidered boundary value problems in certain classes of functions. The obtained results are applied to the solution of the
second boundary value problem for a transversely isotropic oblate spheroid with a spheroidal cavity, the centers and di-
rections of the axes of which coincide. An arbitrary symmetric balanced load is given on the surfaces of the spheroid,
which satisfies a certain condition for the convergence of the series of limit functions developed in terms of Legendre
functions. A feature of this problem for a transversely isotropic body, is the impossibility of describing spheroidal sur-
faces with any geometry by a single pair of spheroidal coordinate systems. This means that such a problem can be solved
not by the usual, but by the generalized Fourier method. Its application made it possible to reduce the original problem
to an infinite system of linear algebraic equations. Thanks to the above estimates of the determinants of simply con-
nected problems, the Fredholm property of the system operator in a certain Hilbert space has been proven. Numerical re-
sults in the considered problem were obtained in the case of a oblate spheroid with a circular crack. The surface of the
spheroid is assumed to be free of forces, and a constant normal load is applied to the crack. The graphs of normal
stresses in the crack plane outside its boundary, as well as the values of the stress intensity factors at its boundary, are
presented. A parametric analysis of stresses and SIFs depending on the geometric parameters of the problem is carried
out. The practical convergence of the reduction method in solving an infinite system is investigated.
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