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V.1 NEAGU

SOLVING SOME COMPLETE SINGULAR INTEGRAL EQUATIONS BY INTEGRAL
TRANSFORMATIONS AND ANALYTIC EXTENSIONS

In this paper, the solution of some singular integral equations is presented. The coefficients of the equations (external and internal) possess pointwise
weak singularities on the integration interval, and furthermore, the extension of these coefficients over the entire complex plane yields multivalued
functions. To obtain certain analytical branches, cuts are made in the complex plane, so that at the edges of the cuts, the extracted branches take
different values. Certain integral (equivalent) transformations are carried out on the operator defined by the given equation, and after a series of
mathematical reasonings and calculations, the given equation is reduced to a characteristic singular integral equation, studied in the monographs of
academicians N. Muskhvelishvili and F.Gahov. The solutions obtained are in strict accordance with the results presented in the aforementioned
monographs.

Key words: singular integral equation, Riemann boundary value problem, multivalued functions, analytic continuation, residue, Cauchy type
integral.

B. 1. HATY
PO3B’SI3YBAHHSA JEAKHUX [IOBHUX CUHTI'YJIAPHUX IHTET'PAJIBHUX PIBHSHD
IHTETPAJIBHUMU NEPETBOPEHHSMU TA AHAJITUIHUMUA POSIINPEHHAMMU

VY naHiii poOOTI NpeNCTaBICHO pIlIEHHS IESIKUX CHHTYJSIPHUX IHTerpanbHMX piBHSAHb. KoeQilieHTH piBHSHb (30BHIIIHI Ta BHYTPIIHI) MaroTh
MOTOYKOBO cJIa0Ki OCOOMHMBOCTI Ha iHTepBali iHTETrpyBaHHS, KPIM TOTO, IPOJOBXKEHHS IMX KOe(diIlieHTIB Ha BCIO KOMIUICKCHY IUIOIIMHY represents
multiform functions. [{ns oTpuMaHHs NEBHUX AaHANTHYHUX TLTOK PO3pi3u POOIATH y KOMIUIEKCHIM IUIOLIMHI, TaK L0 Ha KPasX po3pi3iB BHIy4YeHi
rikn HaOyBalOTh pI3HMX 3Ha4YeHb. Hajx omeparopoMm, BHU3HAYEHUM [aHUM DPIBHSHHSAM, 3JIHCHIOIOTBCS II€BHI IHTErpajibHi (€KBiBaJEHTHI)
HEPETBOPEHHSI, sKi Mmicis cepii MaTeMaTHYHHX MipKyBaHb i OOYMCICHb 3BOASTH [aHE PIBHSHHS [0 XapaKTEPHOTO CHHIYISIPHOTO iHTErpaibHOrO
PpiBHSIHHS, IOCTiKeHoro B MoHorpadisx akanemikie H. MycxBenimBini ta @. I'axoBa. OTpuMaHi pillleHHs YiTKO Y3rOKYIOTBCS 3 pe3yJIbTaTaMH,
MIPE/ICTABICHUMH y 3raJlaHuX MOHOTrpadisx.

KurouoBi cioBa: cuHTynsipHe iHTerpaibHe piBHAHHS, KpaiioBa 3afada PiMana, 6araTo3HauHi (yHKII], aHAIITHYHE IPOJOBKEHHS, BiIpaxyBaH-
Hs1, iHTerpai tumy Komi.

Introduction. Integral equations are found in various fields of science and in numerous applications (such as
physics, control theory, economics, and medicine). The theory of such equations was founded by A. Poincaré and
D. Hilbert almost immediately after the appearance of the classical theory of Fredholm integral equations. Exact
solutions of integral equations play a major role in the formation of a correct understanding of the qualitative
characteristics of many phenomena and processes in various fields of natural sciences. However, as mentioned in the
monographs of N. Muskelishvili and F. Gahov and in other works, the solution of singular integral equations can be
determined in rare cases, and even in these cases, the determination of an exact solution requires the calculation of
singular integrals, which is accompanied by great difficulties both theoretical and computational. The most often applied
method for solving singular integral equations on closed contours consists in the equivalent reduction of the given
equation to the Riemann-type boundary value problem, which is solved effectively. In the case of an open integration
contour (bounded or unbounded segment) this method can no longer be applied and consequently various other methods
are applied depending on the given equation.

In this paper, the method of analytical extension over the entire complex plane of the unknown function and the
coefficients of the equation, of some integral transformations, as well as the theory of residues and the passage to the
limit is applied so that the given equation reduces to a characteristic equation. The obtained results are compared with
some known results for some equations that represent particular cases of the equations considered in this paper. As a

result of these comparisons, we are convinced that the obtained results are correct.
1

I
L. Levin [1] proved that in the case when a(x) = (1 —x? )2 , b(x)= 27 (1 —x? )2 and A is constant, the singular in-

tegral equation
1 1 o(1) 1 ¢1 b(¢)
a(x)—| —=dt+— | —Ze(t)dt=f(x 1
( )m'J.—lt—x ﬂij—lt—x(p() f( ) O
can be reduced to solving two independent Carleman integral equations which are solved in the usual way. For a
somewhat more general case, when
a(x)b(x) =12 (l—xz) ,

equation (1) was solved in [2, 3].
In the fourth paragraph of this work, complete integral equations of the form are solved

1 t Lo K, (1,
;J‘j%dt—/tzgﬁ#q)(t)dt:f(x) (m=1,2,3,4), 2)
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where A is a complex parameter, / is a given Holder function on the interval [a, b]:

K, (t.%) = (b—x)(x—a) . Ky(tx)= (b—x)(t—a) ’
(b-t)(1-a) (b—t)(x—a)
Ky (t,x)=K5'(t,x) and K,(t,x)=K;'(t,x).

We will consider in detail the cases when m =1 in (2).

The solution is carried out by analytical continuation of the coefficients (multivalued) of the equation, identifying
single-valued branches and using some integral transformations. As a result of these actions, the solution of the original
equation is reduced to the solution of the usual characteristic singular equation with the Cauchy kernel, followed by the
application of the theory of the Riemann boundary value problem. In this case, the Poincaré-Bertrand permutation for-
mula also plays a significant role:

1 ¢ dr 1 o(r,s) 1 1 o(z,5)
i '[L T—t i '[L S—T ds = go(t, [)+ m"[LdS i IL (s—z')(z'—t) ar.

The second and third paragraphs provide the necessary information about the relationship between the solution of
the singular equation and the solution of the corresponding Riemann boundary value problem. In the fourth paragraph,
the explicit solution of the characteristic singular equation is expressed through the solution of the corresponding Rie-
mann boundary value problem.

Relationship between the solution of a singular equation and the solution of the Riemann boundary value
problem. Let's consider the simplest type of special integral equation — the characteristic equation:
b(t) ¢ o(7)
a(t)p(1)+ pral Py dr=f(1). 3)
In this case, the solution to the equation can be reduced to the solution to the Riemann boundary value problem,
providing a closed-form expression for the solution.
Let us introduce a piecewise analytic function defined by a Cauchy type integral,

S L G “)

2rilr—z
where ¢ is the desired solution to the characteristic equation.
According to the Sokhotsky's formulas [4, 5]

p(t)=0" (1)-D7,

1020 o ()0 ®
— Lr_tdr—(b (1)+®(2).

Introducing the values
1 ¢ o(7)
(D(t) and ;J.L:dl'
into equation (3) and solving it for ®* (7), we find that the piecewise analytic function @(z) must be a solution to the
Riemann boundary value problem
O (1)=G(1)d (t)+g(1), (6)
Where
_b :
o000
a(1)+b(t) a(t)+b(t)

Since the fact that the desired function ® (z) is represented by a Cauchy integral, it must also satisfy the additional

()

condition
O (oo) =0. ®)

t)—b(t
The index of the coefficient % of the Riemann problem (6) will be called the index of the integral equa-
a +0(t
tion (3).
Having solved the boundary value problem (4), we use formula (5) to obtain a solution to equation (3).
Thus, the integral equation (3) has been reduced to the Riemann boundary value problem (6). To establish the

equivalence between the equation and the boundary value problem, it is necessary to prove that, conversely, the function

Bicnux Hayionanvnoco mexuiynozo ynisepcumemy «XII». Cepis: Mamemamuune
Mooentosants 6 mexmiyi ma mexnoaozisx, Nel (8)'2025. 87



ISSN 2222-0631 (print)

(p(t) obtained from the solution of the boundary value problem also satisfies equation (3). To do this, we need to con-

firm that the second formula in (5) is also valid. Let's prove it. If the solution to problem (6) is represented by a Cauchy-
type integral, then both formulas (5) hold, and one can uniquely recover the original equation from the boundary value

problem. Now suppose there exists another function @, (z) , that satisfies the same conditions. Then, for the difference

D, (2) = D(2)-P, (2),
the following equality holds:
(0} (t)— D, =0.
By the theorem of analytic continuation theorem and Liouville’s theorem (taking into account (8)) @, (z) =0.

Consequently, @, (z) =0 (z) , which completes the proof.

To simplify further formulas, we first divide the entire equation (3) by y/a” (¢)—b°(¢), i.e. we assume that the co-
efficients of this equation satisfy the condition
a*(t)-b*(t)=1.
Substituting the limit values of the Cauchy type integral into the boundary condition (6), we obtain the characteris-
tic singular integral equation

Lo+ 20 2 g, ®

27i -t
From the solutions of the last equation using formula (4) we obtain a solution to the Riemann problem.

Solution of the characteristic equation. Let us recall (see [5]) the solution to the Riemann boundary value prob-
lem (6), assuming y > 0, and compute the limit values of the corresponding functions using the Sokhotsky formulas

oF(1)=X" (;)E%Zr W (t) —%Pﬂ (t)] ,

o (1) = X(t)[—% AU P (1) P (t)l,

X (1)

where W(7) is the singular integral

_ L elr) dr
\Y(t)_Zm' LXJ'(T)r—t' (10)

From here, using formula (5) we obtain

o141 et )10 w20

X (1) X (1)

.. 1 . . . .
Based on the boundary condition, we replace - ( ) = m , and the function ¥ (t) with their respective expres-
X7 (¢t t

sions according to formula (10). Then we have

1 1 . 1 1 () dr 1
‘”(t):i”m}gm”( (t){l_@}{%h (i 2 (t)}'

If y <0, then, as is known (see [5]), the Riemann problem (6), generally speaking, is unsolvable. The condition

for its solvability

g(r) i
——7"dr=0 (k=12,..,—y (11)
will simultaneously serve as the conditions for the solvability of equation (3).
Let us summarize the results of the study.

1°.1f 7 > 0, then the homogeneous equation

a(t)q)(t)+%£i(jt)dr:0

has y linearly independent solutions.
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2° | If y <0, then the homogeneous equation has only then trivial solution.

3% If >0, then the inhomogeneous equation

b(t) ¢ o(7)
a(t)p(t)+——=| ——=dr=f(t
o)+ [ 2 de= 1 (1)
is solvable for any right-hand side f (t) and its general solution depends linearly on » arbitrary constants.
40 1f 7 <0 then the inhomogeneous equation is solvable if and only if its right-hand side f (t) satisfies the —y
conditions
[ e (6) 1 (t)dz =0,

where

Solution of equation (2). The operator defined by the left-hand side of Eq. (2) (for m =1), is acted upon by the

operator
1 b b=ty (1)
A = |— dt,
( (//)(x) ﬂi“‘“(l—aj t—x

where p is some complex number, the choice of which we can control.

In the obtained repeated singular integrals, we change the order of integration, using the Poincaré-Bertrand for-
mula [4, 5]. We get

(1—/12)(b_xjp w(X)+L2j‘b(ﬂ(S)dsj‘b(b_tjp (t_sdt dt —

xX—a o e a\t—a )(t—x)

S e

We denote the inner integrals by 7, (s, x) and I, (s, x), respectively. Let us calculate 1, (s, x). We split the outer

integral from @ to x(s<x) and from x to b(s>x) and calculate I, (s, x), with respect to s <x, and then s> x.
Due to the symmetry of the function 7, (s, x) with respect to s and x, the result will be the same.
We proceed from the multivalued function
1 1
z —b)5+p (z—a)i_p

(z=s)(z-x) ~

for which the points z=a and z =5 (and only these) are branch points.

F (z)z(

P

(13)
Let us make a cut along the segment [a,b] and select an analytic branch of this function. For this, we fix

arg(r—a)=0 and arg(h—1)=0 on the upper side of the cut. We denote by F, (¢) the value of this function at point ¢

on the upper side of the cut. We have

(b=1)2"" (1=a)2”

(t—s)(t—x)

Let us find the value of this branch at the same point ¢ on the lower side of the cut, bypassing the point z=a, or

Fy(t)=ie"™

(14)

z=b. Letus denote this value as F, (¢). We get
1
b-1)2"" (t-a)2””
=)

Since the expansion of the function £, (z) in a Laurent series in the vicinity of the point at infinity starts from —,
z

F,(t)=—ie”"™ (

(15)

then
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res F, (z)=-1.

Z=00

We integrate the function F), (z) along the closed contour L~ shown in the figure below (Fig. 1).

Cy- Cy

Fig. 1 — Integration contour L~ .

According to the definition of the residue of a function at infinity, we have
[, F,(t)dt =2zilim F, (z) = -2 (16)

Let ¢ denote the radius of the circles C,, C, and the semicircles CS+ , CS, , Cx+ , Cx, . In equality (16), we take
the limit as & — 0, assuming that —% <p< % . Due to the weak singularity (infinity of order less than one) of the func-
tion F,(¢) at the points z=a and z=b, we obtain

hi%jc F,()dt = giir%)jcb F,(t)dt=0.
We proceed to calculate the remaining limits, in this case we will use equalities (14) and (15). We get

. . 0 io\. i
lim F, (t)dt:glirz)jﬂFp<s+ge¢)zge‘/’d(p=

g0 o
. ler . l—p . ler . l—p
0(s+ge”"—b)2 (s+8e"/’—a)2 , 0 (s+£e"”—b)2 (s+ge""—a)2
= lim , , ice’dp=i| lim . do=
097 ge”ﬂ (S+€€l(p _x) T e—>0 S+gel(p —X
b LI 1, b LI 1,
:_epﬂ'i( _S)2 (s—a)z (_ﬂ_):ﬂ_epﬂ'i ( _S)2 (s—a)z . (17)
s—x s§—X
gii% ; F, (t)dt:;iil%jo F, (s+£e"”)i£e’¢’dgo:
o, o,
x (s+ge"”—b)2 (s+8e”” —a)z , x (s+ge"”—b)2 (s+8e"” —a)z
= lim : : ice?dp=i[ " lim , dp=
&—0 0 gel(p (S + gel(p _x) 0 &—0 S+ gel(p - X
b LI 1, b LI 1,
:e—pﬂ'i ( _S)2 (s—a)z (_ﬂ_):_ﬂ_e—pﬂ'i ( _S)2 (S—G)Z . (18)
s—x s—x
Likewise
1 1
. i (b=%)2"7 (x=a)2””
lim . F,(t)dt =+ 7e*P™ — : (19)
Taking into account (17) — (19), after the passage to the limit in equality (7) we obtain:
1 1 1 1
A\ b— STP (o 7P b— StpP _ N3P
Ib[b tj dt dt = —ﬂtgpﬂ'( S)2 (s a)z +7ztgp7r( x)z (x a)z . (20)
a\t—a (t—s)(t—x) s—X s—X Cos p7w
Similarly
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jb[b_t]p (b_t)(t_a)dt:—nctgp;z(b;sjp ! —ﬂctgpﬂ[b_xjp L 1)
a\t—a (t—s)(t—x) s—a) s—x xX—a) s—Xx

Substituting (20) and (21) into (2) b we arrive at the following equation'

(1-2) 22 (o) {C’gf”f - }

_Ctgpﬂ[b—x)”j”w(t)dﬁ A2 tgp”j( j () g |-
V4 xX—a at—x T t—a t—x

—x Y pof(b—x)(x— ?
2 tgpﬂ(b xj Ib (b—x)(x—a) (p(t)dt+ e J‘b o) =(4f)(x). (22)
T \x—a a (b—t)(t—a) t—x rmcospr "\/(b—t)(t—a)
Let us choose the parameter " p " such that
ctgpm = —lztgpﬂ . (23)

As a result, the terms contained in square brackets in equality (22) cancel each other out. Let us find an explicit
match for the " p " parameter. From condition (23) we obtain
A 1 tA+1

* , = =—I7In——:. 24
2% -1 P 2mi £A-1 @9

1
ctgpr =+ i, tgpﬂzi;, Cos prr =
i

In what follows, we will assume that p = p,. Taking into account equalities (15) and after cancellation by

(b—x)"(x—a) ", equation (22) takes the form

(1—/12 )go(x)+ij‘bwdt—

mwidat—x

_%I: ((Z:,x))((,x_;;) w,(i)xdt - [Z:sz [(4r)(x)+C], (25)

/1\/(7)

I ,/ b- t t a
Adding the sought equation to equatlon (25),

lLt xd /121'[\/ —a tx_ (26)

we obtain a system from which we exclude the integrals containing the expression \/ (b—x)(x- a)[(b —t)(1- a)]_l . As

where

a result, we get the equation

1 cpo(t) 1 A (x-aY
_/1¢(x)+; ) t_xdt:l_ﬂzf(x)—l_lz(b_x) [(4f)(x)+C]. (27)
Recall (see [4, 5]) that the solution to the equation
1 bo(t)
—| —=dt= 28
uco(x)+m.fat_x g(x) (28)

in the class of functions unbounded at x =5 and unbounded at x = a has the form

O ey ) e e )

y7i 1 ﬂl(lu t—x
where
q:LLn'u_l, & (—o0, 1] U[1, +0).
27w u+1
1 A+1
In the case of equation (18), we have y=-1=¢g=——>1Ln =p,
27 A-1
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g(x)zl_lﬂzf(x)_l_ﬂﬁ(z:ijPJ (t— j {( )dHC}

Substituting these expressions for ¢ and g(x) in (29), we obtain
2 22 x—a\ (o b-t\ f(t b ta”fx
o)=L ) -— (= (= L I G
-4 7i(1-22) \b=x t—a) imx Ty x— ~t) t-x
2\ _N\2p P
~ A 2(b x] J-j(t aj dt L( ] S(s) 4o
(m.)2(1_/12) xX—a b-t t—x s—a) s—t
3 A*C (x—ajp_ AC (b—xjpj-b[t—ajp dt
(1_12)2 b—x m’(l—/lz)z x—a) da\b-t) t-x
In the repeated singular integrals, we change the order of integration, using the Poincaré-Bertrand formulas, and we
obtain
A2 x—a) o(b=t) f(x 1 b—x ) b f
o)== 22[17— j J.a(t— j tE )dH 22 Lx— J. bt t()dt
wi(1-22) \b=x) elima) ex T ey ;
A b—xY ¢b(b=s) b(t—a\?” dt
YA 2( - j L[ - j f(s)d{ja[b—tj (t-s)(t-x) |
g (1_/1) xX—a s—a s X
22 N\ 2 — V2| bl t—a PP
B Cz(x aj 3 C : (b xj J(l aJ dt ' (30)
(1_/12) b—x m’(l—ﬂ) xX—a a\ b-t t—x
We calculate the integrals from the square brackets in equality (21), obtaining
p(t—a? dt A +lfs—a)? 1 A+l x-aY? 1
[ =t = - = . 31)
a\b—t (t—s)(t—x) 24i \b-s s—Xx 24i \b—x s—Xx
_ A\ 2 _\2P 2 _
Ib t—a dt :—m'/i +1({x—a +7zi/1 1. (32)
a\b-t) t—x 24 \b—-x 22
Substituting these integrals into equality (30), we finally obtain a solution to equation (2) (for m=1).
N A\ 2\ _ NP f(1
o(x)= 1 (x a] jb[b tj f(x)dt—i-[b x} Jb([ aJ f()dt +
27;1'(1_,12) b—x) Je\t—-a) t—x x—a) Ja\b-t) t—x

+C {(;‘ajp{b_xjp} (33)
—X X—a

By substituting ¢)(x) into the desired equation, we make sure that the terms in the first row form a particular

solution of the inhomogeneous equation, and the terms of the second row form the solution to the homogeneous
equation, where C; is an arbitrary constant.

For the convergence of integrals (31) and (32), it is necessary that Re2p=2Rep <1, ie. Re p<%. Since

then the condition Re p <% is satisfied for 0 < arg :11+1 < . The last condition is satisfied for all

1 A+1
Rep=—mar R
P 27 g/t—

. . . . .. A-1 .
A for which ReA <0 . However if we put p=p_ in (24), then we arrive at the condition 0 < arg il < 7. This
+

condition is satisfied for all 4 for which Re A <0, i.e, the imaginary axis must be excluded from the A —plane.
In the case of kernels K,, K; and K,, by the same method, Eq. (2) is reduced to Eq. (27) with the same

difference as C =0, and to the same solution (33) with C;, =0.

However, in the case of kernel K, , in general, formula (33) is not a solution unless the condition
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bl (x—a\ (b-x)
+ t)dt=0
n= =) o
is satisfied. This condition means that f (t) must be orthogonal to the solution of the homogeneous equation. In the case

of K, and Kj the solution is unique ( C; = 0 ) and unconditional.

Due to the behavior of the Cauchy-type integral at the ends of the contour of integration [5, 6], solution (33)
belongs to the class of functions that are unbounded at x=a and x=5b.

Conclusions. The methods used in this work, integral transformations, analytical continuation, after a successful
choice of the integration contour, the use of Cauchy theory of residues and limit transition allowed the solution of this
integral equation to be reduced to the solution of some characteristic singular equation. These methods can be used in
solving other singular equations, as well as in calculating some singular integrals that depend on parameters.
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