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SOME PROBLEMS FOR TRANSVERSAL ISOTROPIC SPACE WITH PERIODIC ANTI-CRACK
PACKAGES

In this paper, the stress state of a transversely isotropic space with periodic systems (packets) of plane circular anti-cracks, the centers of which are lo-
cated on the anisotropy axis, and the planes are perpendicular to it, is investigated for the first time. It is assumed that the space is under a constant bi-
axial compressive stress applied at infinity. Each periodic system (packet) is determined by a representative layer whose planes are perpendicular to
the anisotropy axis, containing a finite system of anti-cracks of different sizes. Such a system forms a certain configuration. Any odd number of anti-
cracks of arbitrary size can be included in a specific configuration, but with certain restrictions: the anti-cracks are symmetrical relative to the middle
plane of the layer, their sizes satisfy a certain convergence condition. The given restrictions provide practically uniform conditions with respect to tan-
gential stresses and normal displacements on the boundaries of the representative layer (the order of values of these quantities is in the range
107102107 ), which can be considered as infinity conditions. All problems were solved by the generalized Fourier method, which allowed them to be
reduced to infinite systems of linear algebraic equations with Fredholm operators. The results of the study were also based on an extensive computer
experiment, within the framework of which stress distributions were calculated not only in periodic problems, but also in non-periodic problems
formed by several representative layers. Practical verification of the convergence of the reduction method showed high efficiency of the generalized
Fourier method. Thus, doubling the reduction parameter from 10 to 20 led to stabilization of 8 — 14 significant digits in the obtained results. Compari-
son of stress intensity factors for different configurations showed that for anti-cracks of the same size they depend little on a specific configuration. A
qualitative conclusion that follows from the calculation results is that normal stresses on the surface of a smaller anti-crack outside its boundary in a
packet increase with an increase in the size of larger neighboring anti-cracks.

Key words: transverse-isotropic space, periodic systems of anti-cracks, compressed spheroidal coordinates, generalized Fourier method, repre-
sentative layer, Fredholm operator, stress intensity factor.

O.I. HIKOJIAEB, A. C. KPAHHHYEHKO
JAEAKI 3AJJAYI JJIA TPAHCBEPCAJIBHO-I3OTPOIIHOI'O MTPOCTOPY 3 NEPIOJUYHUMUA
IMAKETAMUA AHTUTPIIIIUH

YV po6orti Brepie JOCTIIPKEHO HAIPYKEHHH CTaH TPaHCBEPCAIBHO-I30TPOIHOIO HMPOCTOPY 3 PO3TAIIOBAHHMH B HHOMY HEPIOJUYHHMH CHCTEMaMH
(maxkeTamu) IUIOCKUX KPYTrOBHX QHTHTPILIMH, LIEHTPH SKUX 3HAXOMATHCS Ha OCI aHI30TPOIIii, a IX IUIOLIMHY NMePIeHANKYISIPHI 10 Hei. BBaxkaeThces, 1o
HPOCTIp 3HAXOJUTHCS ITiJ] CTAJIMM JBOBICHHM CTHCKAKOUMM HAIPYXCHHSIM, IPUKIAACHIM Ha HecKiHueHHOCTI. KoxxHa mepioanyHa cucrema (I1akeT) aH-
TUTPIIIMH BU3HAYAETHCS PEJCTABHUIBKUM LIapOM, IUIOINHY SIKOTO NMEePICHANKYIISIPHI O OCi aHI30Tpoii, i SIKMiT MICTUTh CKIHYCHHY KLIBKICTH aH-
TUTPILIHH pi3HOrO po3mipy. Takuit naket popmye neBHy KOHDIrypario. ¥ KOHKpeTHY KOH(Irypauio MOXKHa BKIIIOYHTH Oy/1b-IKy HEMAapHY KiIbKIiCTh
AQHTHTPINUH JOBLUIBHOIO PO3MIpY, ajie 3 MeBHHUMH OOMEXCHHSIMH: aHTHTPIIHHE CHMETPUYHI BITHOCHO CepeaHbOl INIOMUHN apy, X po3MipH 3am0-
BOJILHSIFOTD MEBHIN yMOBi 30ikHOCTI. HaBesieHi 0OMexeHHs 3a0e3Me4yr0Th MPAKTUYHO OJHOPIAHI YMOBH BiJIHOCHO AOTHYHHX HAIPYXKEHb 1 HOpMallb-

HIX NepeMilleHb Ha MEKaX IPEICTABHHIILKOrO mapy (IOPSIOK 3HAYCHD LUX BEIHUMH 3HAXOXUTHC B tamasoni 1070 +107'), sxi Moxma posrusna-
TH SIK YMOBH Ha HECKiHUYEHHOCTI. YCi 3a/1a4i pO3B’I3yBaIMCs y3aralbHEeHUM MeToioM Dyp’e, 110 H03BOJIMIIO 3BECTH IX IO HECKIHYEHHUX CHUCTEM JIi-
HIHHUX anreOpaidHUX PIBHSIHB 3 (HPEArOIBMOBHMH ONEPATOPAMH. Pe3yabTaTi JOCIIUKEHHS TaKOX IPYHTYBAINCS HA IIMPOKOMY KOMII'FOTEPHOMY €K-
CIICPUMEHTI, B PaMKax SIKOTO PO3PaXOBYBAIIMCS PO3MOJIIN HANPYXCHb HE JIMIIE B NEPiOJUMYHUX 3a/1auax, a i y HeNepioJuuHUX 3a7adax, yTBOPEHHUX
KUJIbKOMa HpeJCTaBHUIbKUMU Lapamu. [IpakTudHa mepeBipka 301KHOCTI METOLY peayKuii MoKa3ajia BUCOKY €(EKTUBHICTh y3arajJbHEHOTO METOJY
®yp’e. Tak, moaBoeHHs mapameTpa peaykuii 3 10 mo 20 npusBeno 1o cradimizanii 8 — 14 3Hauymux mudp B OTpHMaHUX pe3ynbTaTaX. [IopiBHIHHS KO-
edilieHTIB IHTEHCUBHOCTI HANPY)KeHb JUTS Pi3HUX KOH(OIrypauii mokasye, 1o s aHTHTPILMH OJHAKOBOIO PO3Mipy BOHH MaJO 3aJeXaTh BiJl KOHK-
peTHOI KoHbirypanii. SKiCHUIl BUCHOBOK, SIKMH BUIUIMBAE 3 PE3yJIbTATiB PO3PAXyHKY, MOJISTAE B TOMY, 110 HOPMaJIbHI HAIIPY)KEHHS Ha OBEPXHI MEH-
1101 32 pO3MipOM aHTUTPIIUHY 1034 ii MeXelo B aKeTi 3pOCTAIOTh i3 30LIBIIEHHAM PO3MIpy OIIBIINX CYCiAHIX aHTUTPIIIHH.

KurouoBi cioBa: TpaHCBepcaIbHO-130TPOIIHUH IPOCTIp, NEepioMYHa CHCTEMa aHTHUTPIIIMH, CTUCHYTI cepoinaibHi KOOPAUHATH, y3arajibHe-
Huii Mmetox Dyp’e, npecTaBHULBKHUN 11ap, GPeAroybMiB orepaTop, KoedilieHT iHTEeHCUBHOCTI HAIIPY>KEeHb.

Introduction. One of the key tasks of modern science is aimed at solving the problem of creating optimal materials
in which certain physical and mechanical properties would be combined with a relatively simple technology and an ac-
ceptable cost of their production. An important class of such materials are composites, which have found wide use in
various branches of technology. For them, it is the selection of the characteristics of the structural components that de-
termines the features of the resulting material. For this reason, an important place in the mechanics of composite materi-
als is occupied by mathematical modeling, which is aimed at accumulating facts about the behavior of the stress-strain
state of bodies having a certain structure near various stress concentrators: inclusions, cavities, cracks, anti-cracks, etc.
When assessing the strength characteristics of such materials, it is necessary to have an idea not only about the distribu-
tion of stresses near individual inhomogeneities, but also about the mutual influence of various concentrators on the
overall stress state. One of the possibilities to take into account the structure of the composite is to model it by a periodic
system of inhomogeneities. This work is devoted precisely to periodic systems of anti-cracks in transversely isotropic
space.

Review of the results of recent research. Numerical and analytical methods in problems of crack and anti-crack
theory are actually the same or similar, therefore the review of studies considers works devoted to both types of inho-
mogeneities, especially since, for obvious reasons, cracks are given more attention. Research in this direction was devel-
oped by several authors. In [1], an axisymmetric problem of a circular subsurface radial shear crack in a semi-infinite
composite material with initial stresses was investigated using singular integral equations. The problem is reduced to a
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system of Fredholm integral equations of the second kind. A representation of the stress intensity coefficients around the
crack tip depending on the initial stresses was obtained. For two types of composite materials (layered composites with
isotropic layers and composites stochastically reinforced with short ellipsoidal fibers), the stress intensity coefficients
were calculated and their dependence on the initial stresses, physical and mechanical characteristics of the composites,
and geometric parameters of the problem were investigated. In the article [2], the axisymmetric problem of the failure of
a prestressed composite material with a periodic system of parallel coaxial cracks of normal separation is investigated.
Using representations of general solutions of linearized equilibrium equations through harmonic potential functions and
the apparatus of Hankel integral transformations, the problem is reduced to a system of paired integral equations, and
then to a solvable Fredholm integral equation of the second kind. The work [3] is devoted to the asymptotic analysis of
stress in an isotropic material near the boundary of circular cracks, anti-cracks, thin inclusions under different conditions
on its surface. In the local coordinate system associated with the edge of inhomogeneity, asymptotic solutions are con-
structed in the form of expansions by eigenfunctions that depend on the angular coordinates and power series by the ra-
dial variable. Many approximate formulas for stress intensity factors have been obtained, but there are no numerical re-
sults. In the study [4], an exact solution to the problem of a circular interfacial crack in a piecewise homogeneous trans-
versely isotropic space under the action of arbitrary loads applied to the crack boundary was constructed by the method
of integral transformations. Formulas for the stress intensity coefficients at the crack boundary and the values of these
coefficients for some combinations of transversely isotropic materials were obtained. In the article [5], the problems of
the theory of cracks located near the surfaces of volumetric and thin-walled bodies under thermal and force static and
dynamic loads are investigated using the method of thin inclusions proposed by the authors. The influence of body sur-
faces or the interface of its materials on static and dynamic coefficients of stress intensity around defects is described.
The dissertation [6] uses the technique of separation of variables, integral transformations and methods of solving double
and triple integral equations to solve a number of mixed problems of crack theory. The article [7] investigates the singu-
larity of stresses and displacements near a crack within the limits of the simplified Gurtin-Murdoch linear model of sur-
face elasticity. The technique of Mellin and Wiener-Hopf integral transformations is used. In some works, the Green's
function apparatus is used to study the stress state around cracks. Thus, in the article [8], Green's functions for an infinite
three-dimensional elastic body containing a circular crack were derived through integrals of elementary functions. A
solid is considered to be either isotropic or transversely isotropic with a crack parallel to the plane of isotropy. In [9], in-
tegral equations of the problem of the interaction of parallel circular cracks under arbitrary loading in a transversely iso-
tropic elastic space were derived using the Green's function. The theorem on the average value of the integral was used
to highlight the singularities associated with the crack tips. After that, the equations lose their singularity and can be
solved numerically. Numerical results are given only for stress intensity coefficients. The potential theory method was
applied in [10] to solve the problem of thermoelasticity for an isotropic space with an anti-crack under the influence of a
temperature field. The singular integral equations for an anti-crack of arbitrary shape are derived in terms of unknown
thermal shear stress jumps. A similar approach was used in [11] to obtain an analytical solution to a three-dimensional
transversely isotropic thermoelastic problem in which a uniform heat flow acts on a space with a circular anti-crack. The
problems of constructing numerical and analytical solutions in problems with cracks arbitrarily oriented in relation to the
axis of anisotropy led to the creation of approximate models for the stress state of such bodies. Thus, in work [12] an ap-
proximate analytical model of the inclusion of an arbitrarily oriented circular crack in the effective elastic compliance of
a transversely isotropic material is considered. The application of the hypothesis that the change in the elastic potential
due to an arbitrarily oriented circular crack in a transversely isotropic material can be approximated by the change calcu-
lated for a certain isotropic medium is investigated. The article [13] focuses on the calculation of the general elastic
properties of a transversely isotropic material containing several randomly oriented circular cracks. A new methodology
is proposed for estimating the contribution of one arbitrarily oriented crack in an infinite transversely isotropic medium
to the overall modulus of elasticity. The paper uses the Mori—Tanaka—Benveniste scheme, which coincides with the in-
teraction-free approximation for the case of crack-like inhomogeneities. The Fourier method in problems of the theory of
elasticity for transversely isotropic bodies with one canonical inclusion or cavity was considered in works [14 — 16]. The
development and application of the generalized Fourier method for transversely isotropic doubly connected bodies, the
centers of whose boundary surfaces coincide, were considered in works [17, 18]. Two parallel cracks in the transversally
isotropic space were considered in the article [19], where the basicity of the constructed solutions was also shown.

The given review of literary sources devoted to research in the theory of cracks and anti-cracks shows the impor-
tance and relevance of further study of the stress state of interacting cracks, as well as the development of a mathemati-
cal apparatus for its implementation. It also demonstrates the lack of research on periodic packages of cracks and anti-
cracks.

This paper considers problems for periodic systems of plane parallel circular anti-cracks in transversally isotropic
space. Each system is defined by a specific set of anti-cracks located in a representative layer of space, the planes of
which are parallel to the crack planes and the isotropy plane. It is assumed that such a layer periodically extends over the
entire space. The choice of the number of anti-cracks, the distances between them and their sizes in the representative
layer can be arbitrary if the conditions of symmetry of the anti-cracks relative to the median plane of the representative
layer and convergence of the method are met. Next, three options are considered: one anti-crack in the representative
layer, three anti-cracks with two different sizes, five anti-cracks with three sizes.
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General formulation of the problem. Consider an elastic transversely isotropic space with an infinite system of
uniaxial parallel plane circular cracks {I';};- ., . Let's mark the centers of the anti-cracks {O,};-_, , the distance between
them % (/> 0), anti-crack radii ;. We will assume that the axis of anisotropy of the transversely isotropic space pass-
es through the centers of the cracks. Let's fix in space the Cartesian coordinate system (x, y, z) and the cylindrical sys-

tem (p, @, z) associated with it so that the point O, is the common origin, and the axis Oz has a directional vector
0001 The elastic steels of the space material are denoted by constants {c; } _1- We will consider these constants to be

positive. For basic transversally isotropic materials, this condition is fulfilled. Consider the problem of determining the
stress state of the space indicated above in the case when a constant compressive biaxial stress is applied at infinity. The
problem boils down to the solution of the boundary value problem for the system of equations of equilibrium of a trans-
versely isotropic body, which in the axisymmetric formulation can be written as follows:

1 o %,

Ay —— |+cyy— |V, +(cjy +cg)—Z==0, 1

|:Cll[ 2 ,02] Caq 822} PRAGE C44)6p62 (1)
o 1o oV

s +ey3— V. +(e3 +ey) ——| p—=2 =0, (2)
oz° p op oz

(x,y,2)eQ=R*\ UF].

[=—

The boundary conditions on the anti-crack surfaces and at infinity have the form:

V(x, y, Z)\(x, y,z)er, =0, [ =—00,00, O'p -0, r » =0, z' =0. 3)
Above (V,,V.), (0,,7,,,7,,) —are the components of the ax1symmetrlc displacement vector and stress tensor in
62
cylindrical coordinates, A, = 8_2+_8_ — an axisymmetric variant of the two-dimensional Laplace operator in polar
P~ POpP

coordinates.

To construct partial solutions of the system of equations (1), (2), which correspond to the geometry of the domain
Q , with each point O, we will connect the equally directed with the coordinate system Oxyz local Cartesian coordinate
system (x;, ¥, z;) , and also two Cartesian {(x;,, v, 2, )}--, and two oblate spheroidal {(&,, 7, ¢)}-; coordinate sys-
tems such that:

~ Z;
X=X, =X, =a ch§ sinz cosp, y=y; =y, =a;ch; sing sing, T‘j—z =a shgK COS7] 4 .
S

Here a; is the parameter of the spheroidal system, which coincides with the radius of the corresponding anti-crack,

ef,s €[0, ), 77,,€[0, 7], ¢ €[0, 27], the equation of the /—th crack surface is égzs =0. The parameter v, is the root of
the equation

011044‘/2 = (11633 = 2013¢44 — 0123 WV A+ 33644 =0 4)

In the following, we will consider the case when the roots of equation (4) are real, positive and different It follows

from the relations between the coordinates that equalities 7 ,=7 ,,=7, are fulfilled on the surface of the /- th anti-

crack.

In [17], the sets of linearly independent partial solutions of the general system of equilibrium equations in dis-
placements in a oblate spheroidal coordinate system were constructed in the form of basis vector functions. In the case
of an axisymmetric stress state, we obtain from those solutions:

+(6)(§jsﬂ 77]5)_ +(6)(§jsﬂ 77]5) u;i?)(gj.S’ ﬁjs)]) n:O’ la‘“) S:LZ’ (5)

where

. h z - —
uj(@(f’n): Qn(ls %) R1(COSﬁ); V —epi-kké' i kq:cllvs Cay4 ,s=12,
F,(ishS) op 0z o3ty
F,(x), 0,(x) — Legendre functions of the first and second kind; {€,, e,} — unit base vectors of the cylindrical coordi-

nate system. The displacements (5) in coordinates have the following form:

k. =
Vit (&) =uy O (€ 71,508, - ﬁuf“’(;,s,n,-s)ez, s=1,2, (6)

where
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1
O ) = {Q';( 5)}P‘1<cosn)
Pl(is?)

Building a solution to the problem in a general setting. We will look for a solution to problem (1) — (3) with
conditions at p — oo in the form

2 o ©
_ - ; .
V(xs s Z) = VO(xs Vs Z)+Z Z ZAE f)1Vv+1(16)(§ls’ 77]S) > (7)
s=1/=—00n=0
where Agl,), are unknown coefficients that must be found in the process of solving the problem, 170 (x, y, z) — displace-
ment that meets the conditions at infinity.
We find the vector function 170 as a solution to the system of equations (1), (2) in the form 170 = Bpe, . Then, at
B=-0/(¢;, +¢) , the displacement ¥, sets a uniform stress state in space, which corresponds to the boundary condi-

tions at infinity (3)
We will use the result proved in [19].

Theorem 1. Under condition \/Zals +\/V73amch§ms <m—=I|h, l,m=—0-=+0w, [ #m, the following addition theo-

rem holds:
Vstg )(é:ls > ﬁls) = Z Vsjlgé) (gms > ﬁms Z gfzéil)]l( ls) ("tfz/lc (ams) > (8)
k=

where

Jj+l
(9 (g, ) = \/;gj,n [_l Vs i J
A 9

Ennt ) R u 2+ O 1 241/ 2+3/2)| 2 [m—1|h

2 Jr(k+1/2)e,, (p+))! { i i, T

(46)k _
Sjn=t (s pZ:kF(p/2—k/2+1)r(p/2+k/2+3/2) 2 m-1|h

l, n—-k=2p, peZ,
£,4 = " PP o)y = [sign(m—D)]""*,
’ 0, n-k=2p+1, peZ,
I'(x) — Euler's gamma function.
Let's transform the displacement vector (7) using formula (8) to each individual coordinate system. As a result, we
have:

V(xl, Vs Zl) = Balchgl’s sin ﬁl,sé +

2 w
+z z Aglr)l Verr(t6) (gls B ﬁls) + Z Z Vstr(l6) (gls 5 ﬁls ) Z Z a)m lA(m) Z gl({éjz)Jl (ams )f/(i?)rl’ (als) . (9)

s=1n=0 s=1n=0 m#l k=0
Passing to the coordinate form of displacements in (9) and satisfying the boundary conditions (3) on the surface I';, we
obtain a resolving system

2
Z{A(”+ZZI(§'"1A('")}———5M, n=0+0w, | =—0+0, (10)

s=1 m#l k=0

2
Z\/_{A(l)+22tf,:"klA(m):|:O, n=0+o, [=—00+o0, (11)

m#l k=0

where

n2a, . 1 2a )
toml =i" = sin(zn/ 2)h,(,f?>,f g0t =i =2 cos(an / 2)R0s

Toa Toa
i i (66) _ N (64) (46)
Ab(I)l BaAb(r)l’ mlz;k_ o, zgkmjl(ams)f/ n( ls)

6,x — Kronecker delta symbol.
Note that at n=0, system (10) — (11) is satisfied at A =0 (s=1,2), which is a necessary condition for the

s,n

regularity of solution (7).
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z Solving problems with a periodic system of anti-cracks. In or-
der to formulate a periodic problem, it is necessary to clarify what is
meant by such a problem. Note that not for every system of anti-cracks

7] that is periodically repeated can be correctly formulated a periodic

1 1 problem. In [20], the idea of a representative layer in a thermoelastic

> — < problem for a periodic system of spherical inclusions was proposed,
QU a4 on the boundaries of which conditions were chosen that allowed peri-
[T odic continuation to infinity. Usually, these are some homogeneous

04 conditions that can be realized at infinity. However, if in the article

[20] the periodic problem was replaced by an equivalent problem for a

representative layer, then in this work, periodic problems are solved
directly, and the conditions on the boundaries of the representative la-
yer are verified numerically (their fulfillment follows from a certain symmetry of the problems under consideration).

Fig. 1 — Representative layer. Configuration 1.

Configuration 1. Consider a system of identical anti-cracks (configuration 1). A representative layer for such a

(1)

system is shown in Fig. 1. Since the problem is periodic, the unknown coefficients A;’, should not depend on the index

[ . Then the system (10), (11) can be rewritten in the following form:

Z{A +2Ask2r3;”k°} 25 Spps n=l+00, (12)

m#0

2 k ~ o
Z\/S_{AM+ZAS’,{ tf,:"ko}zo,n:1+oo. (13)
VS

s=l1 k=1 m#0

Theorem 2. When the condition a;, +a,,, < h/\/z, l#m, s=1,2 is met the operator of system (12), (13) is a
Fredholm operator in Hilbert space I, x1, .
Proof. To prove the theorem, it is enough to show the absolute convergence of the series

i th,’,"kl r=0,1; s=1,2; [ =—00=+00.

nk=1m=l
Let's mark
Z _ 1 V VS ams
s,ml — AT 44"
2|\m=1|h
Consider a series
SN, 46)
PIDIPNFwACHST i CSIE
m#l n,k=1 j=k
It can be transformed by replacing the summation orders and subscripts with a series of form

i12] /2]
S ¥ oeinzz, S TN

ol b Sl O D(j—s+3/2) & rIT(p-r+3/2)

We will use estimates
[j/2] 1 [j/2] 1

J J
Y S Y
o siT(j-s+3/2) o sIT(j-s+1) 3 '(j s)' J'
[p/2] _ p-l p-1
(p-2r+1/2) < Z 1 2 .
o r'\T(p-r+3/2) Sri(p-1- r)' (p-D!
As aresult, the original series is majorized by the series

> Z (p+J)‘

p-1

j+1 P
(p+j)! stams \/ZGIS _
Y m’_ Z Z [|m—1|h] [|m—l|h] -

m#l j,p=1 ( m;tllplj'(p_l)!
j+1
:l i (p+)! s \/>alv Z 1 <l i (p+ ) VeQ,,. ! \/Zals pZii:
4 J>p=l Jip-D! h h nzt | M =1 |]+p+1 4j:0,p:l Jip-D! h h =1 1

j+1 2
_ 72'_2 i (p + ])' VS ams ’ \/Zals
12,62 i p-D! & h

The last series converges for a;, +a,, <h/ /v, .

Bicnux Hayionanvrnoco mexuiynozo ynisepcumemy «XII». Cepis: Mamemamuune
MoOentosants 6 mexiyi ma mexnoaozisx, Ne2 (7)'2024. 59



ISSN 2222-0631 (print)

The solution of the system was used to determine the distribution of stress in the region of its maximum concentra-
tion — in the plane of the anti-crack outside its boundary. The following formulas were obtained for the stress o, and

stress intensity factor (SIF) K, :

2 o
O-z(pzo)(cll +CIZ) / (0-044) == q_S_Z(kv +1)Z As,n {Z 1 X
s=1

22 2
Cy4 =l m=0 (Sh™ &, +cos”™ 77.,.)

. T z - = - = - 1 =
x lim |:Sh ésm s, Qn (l sh 55m )Pnl (cos MTsm ) —ch ésm COS g, erz (l sh ésm )Pn (cos Msm ):| + ? Qn (l sh §s0 )Pnl (O)} 4
X—0 Shego

2 0
Ky, (ep +en)/ (0440'\/;) = —\/;Z (ks + 1)2 Aoy -
s=1 n=0
Numerical results for all considered configurations were obtained for the material of the space, which is sandstone

with elastic constants ¢, =5.8576-10'"Pa, ¢, =2.5019-10"°Pa, c¢;; =2.0793-10"Pa, c43 =6.1105-10""Pa,
¢4y =1.6584-10" Pa . For it, the roots of equation (4) are equal v, = 0.52, v, =2.01.

In Fig. 3 shows the stress distribution in the plane of the anti-crack outside its boundary depending on the relative
size of the anti-crack in the representative layer. With a decrease in the relative size of the anti-crack, the magnitude of
the stress decreases, and in the vicinity of the anti-crack boundary, a change in the sign of the stress is observed (the
point of sign change is not shown on the graph due to its proximity to the boundary p = a). In this figure and in all oth-

ers, it is indicated by o * the stress distribution for one anti-crack in the entire space. It is given for comparison, since
the problem for one anti-crack has an exact solution in closed form

a4 kU + DV, —ky(k + Dy, !

. (0, 0)(cry +cpp) / (0cyy) = = —arcsin(a/ p) |,
Cag 7 kzx/q_kn/‘/z (p/a)2—1
K / _ 4Ja ki (ky + DV, —ky (K + 1)\/Z
12(Cry + ¢y (cg40) = N .
7 ky \/q —ki\[va
Table 1 — Dependence of SIF on crack sizes. Configuration 1
alh 0.0 0.1 0.2 0.3
K.y +erpy / (c440) 1.1529 1.1534 1.564 1.1609

The smallest stress value corresponds to one anti-crack in space. This is natural, since one anti-crack is the limiting
case of configuration 1, when « is fixed and 4 — oo . The stress intensity factor has a similar nature of change. Table 1

shows the dependence of stress intensity coefficients
(SIN) on the parameter a/# . Here, the value a/h=0.0
corresponds to the limiting case s — oo, that is, one
crack in space.

Configuration 2. Consider another configuration of
cracks in the representative layer (Fig. 2). We denote it as
ay—a,—ay—a.

_ The solution of problem (1) — (3) for configuration 2
Fig. 2 — Representative layer. Configuration 2. has the form (7), in which

AR = 40

s,1 s,n 3

.y =a;, j=0,1; I=-0+0.
The resolving system here is written as follows:
S| 0L S 0) amejl |_ 4
s,2m+j, .
DAL+ AN D g |===6,,, n=1+0, [=0,1, (14)
s=1 j=0k=1 m: 2m+ j#l 4
k

1 o
z(s{g;{pzzgg; > ti’,i;("”’l}zo,n:l+oo,l=0,l. (15)
14

s=1 s j=0k=1 m: 2m+ j#l
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The proof of the Fredholm property of the system operator for (14), (15) is similar to the proof of Theorem 2, so it
is not given here. The results of the calculations are shown in Fig. 4 and Table 2.

G:(p/a,0)(e11+¢12)/(0C44)

Gz (p/a2){€11+€12)/(0C44)

\ ao/h=0.1; @y /h=0.5; =0

1.5 .
= |
\ =03 @g/M=0.1; a,/h=0.3; z=0

-1.9

/

ap/h=0.1; @, /h=0.5; z=h
Pienls Ll

ah=02 18 k / |

i ) |
/ yd ap/h=0.1; a;/h=0.3; :=h
2.1 \ /

ah=0. 21 |
B \ h=0.1

///w
/

= -—_______\-'"‘-—_._________ A I
========.===_ %
1.0 1.25 1. 75 pla 1.0 1.25 1.5 1.75 pla
Fig. 3 — Stress distribution o_(p,0)(¢, +¢p5)/(0¢yy) Fig. 4 — Stress distribution o_(p,0)(¢;; +¢p5)/(0¢yy)
depending on relative crack size. Configuration 1. depending on relative crack size. Configuration 2.

The proof of the Fredholm property of the system operator for (14), (15) is similar to the proof of Theorem 2, so it
is not given here. The results of the calculations are shown in Fig. 4 and Table 2.

Anti-cracks of different sizes in the representative layer already influence each other when calculating the intensity
factors and the distribution of stresses near the boundaries of anti-cracks. An increase in the size of a larger anti-crack
with a fixed size of a smaller one leads to an increase in the SIF at the boundary of a smaller anti-crack. Conversely, an
increase in the size of a smaller anti-crack with a fixed size of a larger one leads to a decrease in the SIF at the boundary
of a larger anti-crack. The same patterns are observed in the distributions of normal stresses in the planes of anti-cracks
outside their boundaries.

Table 2 — Dependence of SIF on crack sizes. Configuration 2

(ag/h,a,/h) (0.1,0.3) (0.2,0.4) (0.1,0.5)
K, (e + 1)/ (caso), 2=0 1.1630 1.1692 1.1785
K. (o +cp)/(cao), z=h 1.1549 1.1577 1.1587

Configuration 3. Now consider configurations with three different cracks. The representative layer for the first of
them is shown in Fig. 5. Let's denote it as a, —a, —a, —a; —q, .

Fig. 5 — Representative layer. Configuration 3.

The solution of problem (1) — (3) for configuration 4 has the form (7), in which
L@ — 40
S,n

in> Ay =a;, j=0+3, [=—0+00, g =a_,, ay=a_,.
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The resolving system for this problem is as follows:
2 - 3 o0 . X 4
2NN+ Z AL Y @i =8, n=lee, 12043, (16)
. X ., o

s=1 Jj=0k=1 m: 4dm+ j#l

R N R o
AL YA S =0, n=l+0, 1=0+3. (17)

S,n s,
Vs j=0k=1 m: dm+ j#l

The results of the calculations are shown in Fig. 6, Fig. 7 and Table 3.

MN

N

S(piaz)lcrirrenn)/(6cy) . 6 (/1,3 )(C11+C12)/ (0C44) .
| f I |
1g/h=0.4; a1/h=0.2; a,/h=0.3; 2=k g /h=0.5; a)/7=0.1; a>/8=0.3; =h
-1.5 -1.5
ig/f=0.4; a1/h=0.2; a2/h=0.3; 1=2h to/h=0.5; a;/h0.1; a3/h=0.3; 7=2h
1.8 \ -1.8 \
o/ f=0.4; a1/h=0.2; a3/h=0.3; =0 g/h=0.5; a1 /h70.1; a2/h=0.3; 7=0
2.1 2.1
6* ot e
_— <
24 2.4
—___—__-—_
% %
1.0 . 125 1.5 1.73 pa 1.0 1.25 1.5 1.75 pla
Fig. 6 — Stress distribution o_(p,0)(¢;, +¢;5)/(0cyy) Fig. 7 — Stress distribution o_(p,0)(¢; +¢p5)/(0c¢yy)
depending on relative crack size. Configuration 3. depending on relative crack size. Configuration 2.

For each package of anti-cracks of configuration 3, the highest SIF is observed at the boundary of the smallest anti-
crack, and with an increase in the size of neighboring anti-cracks, this SIF increases. Similar patterns were obtained in

the distribution of stresses o (0,0)(¢;, +¢;,)/(ocyy) in the planes of smaller anti-cracks outside their boundaries in a

package with large anti-cracks.

Table 3 — Dependence of SIF on crack sizes. Configuration 3

(ag/h,a,/h,ay/h) (0.2,0.1,0.3) (0.4,0.2,0.3) (0.5,0.1,0.3)
K. (¢ +¢p5)/(cay0), 2=0 1.1549 1.1561 1.1551
K. (¢ +c)/(cyuo), z=h 1.1597 1.1656 1.1707
K. (¢ +¢15)/(cy0), 2=2h 1.1539 1.1586 1.1594

Conclusions. In this paper, the stress-strain state of a transversely isotropic space with periodic packets of flat cir-
cular anti-cracks with their centers located on the anisotropy axis and their planes perpendicular to it is investigated for
the first time. It is assumed that the space is under the action of a constant biaxial compressive stress applied at infinity.
The periodic system (packet) of anti-cracks is determined by a representative layer with planes perpendicular to the ani-
sotropy axis and containing anti-cracks of various sizes. Such a package forms a certain configuration. Any odd number
of anti-cracks of arbitrary size can be included in a specific configuration, subject to the following restrictions: the antic-
racks are symmetrical with respect to the median plane of the layer, their sizes satisfy the convergence conditions of the
method. The established restrictions provide practically uniform conditions for tangential stresses and normal displace-
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ments on the boundary of the representative layer (the order of these quantities is in the range 107'° +10™'*), which can
be considered as conditions at infinity. All problems were solved using the generalized Fourier method, which allowed
them to be reduced to infinite systems of linear algebraic equations with Fredholm operators. Practical verification of the
reduction method efficiency showed high efficiency of the generalized Fourier method. Thus, increasing the reduction
parameter from 10 to 20 led to stabilization of 8 — 14 significant digits in the obtained results. Comparison of stress in-
tensity factors for different configurations shows that for anti-cracks of the same size, their values depend little on a spe-
cific configuration. One of the parallel lines of research of similar problems is connected with periodic packets of cracks
in transversely isotropic space. Recently the authors of this article have carried out such researches and their results are
in print. Another promising direction of research is the class of non-axisymmetric problems with periodic systems of
cracks and anti-cracks.
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