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FINITE-STEP METHOD FOR DETERMINING EQUILIBRIUM STATE OF GYROTHEODOLITE

The problem of orientation of a solid by using a torsion suspended gyrotheodolite is considered. Such gyrotheodolites are widely used in modern
technology. During their operation, the problem arises of identifying the equilibrium position. It can be solved in many ways. A method is proposed
for identifying the equilibrium position of a gyrotheodolite, which has several advantages over other well-known classical methods (least squares
method, Kalman filter, and others). A mathematical description of the gyrotheodolite rotor motion is provided, a mathematical model of the method is
given, and further development of the research is indicated.
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ess forces.

I.A. TOKMAKOBA

KIHHEBO-KPOKOBHUU METOJA BUSHAUYUEHHS PIBHOBAXKHOI'O IMOJOXEHHSA

TTPOTEOJOJIITA
Po3riispaerses 3anaua opieHTallii TBEpIOTro Tijia 3a IOMOMOIOIO IipOTe010J1iTa Ha TOPCIOHHOMY TiJBici. Taki ripoTeonoiTa MalOTh UPOKE 3aCTOCY-
BaHHs B cyvacHiil TexHini. [Ipu ix poOoTi BUHHUKaE 3ama4a ineHTudikanii monoxeHHs piBHOBaru. BoHa Moxe BupimyBatics 6araTbMa croco0ami.
3anponoHoBaHO METO[ iAeHTH(]iKallii piBHOBAKHOTO MOIOKEHHS TiPOTEO10MiTa, AKUIl Ma€ psJ epesar nepes iHmUMHU BiJOMAMHU KIaCHYHHMH METO-
JaMu (METOZIOM HaliMEeHINUX KBaaparis, Gpinbtpom Kanmana Ta iHmmmu). BukianeHo MaTeMaTHYHUI OMUC PyXy pOTOpa ripoTeo/I0NiTa, JaHa MaTeMa-
TUYHA MOZENTb METOY 1 MO3HAUEHO MOJATBIINI PO3BUTOK JAHUX JOCIIDKEHb.

K/11040Bi ¢10Ba: TipOTEOAONIT, a3UMYT, TipOCKOI, iHEPLIHNI MOMEHT, AeMII(pYIOUHil MOMEHT, CIIPSIMOBYIOUMII MOMEHT, MOMEHT BiJl iHIINX
HEBPAXOBAHHX CUJI IPOLIECY.

H.A. TOKMAKOBA

KOHEYHO-IATIOBbIM METO/J OIMPEAEJEHUA PABHOBECHOTI'O ITOJIO)KEHU S

I'MPOTEOJOJIUTA
PaccmatpuBaeTcs 3a1a4a OpHEHTALMK TBEPOTO TENa C TOMOIIBIO TMPOTEOI0IMTA HA TOPCHOHHOM TO/iBEcE. Takie rupoTeo10MThl IMEIOT IMHPOKOE
NIPHIMEHEHUE B COBPEMEHHOI TexHuke. [Ipu ux paboTe BO3HHKAET 3a/a4a MACHTU(UKALMH NOJI0XKEHUs paBHOBecHs. OHa MOXKET peaThcsi MHOTUMU
crniocobamu. [IpenoxkeH MeToa MACHTU(UKALMN PABHOBECHOTO MOJIOKEHHS! THPOTEOAO0IUTA, KOTOPBI UMEET psiJi MPEUMYILIECTB Iepe APyruMU 13-
BECTHBIMH KJIACCUYECKMMH METOJaMH (METOJIOM HaMMEHBIINX KBaapatoB, punbtpom Kammana n apyrumu). M3noskeHo MaTeMaTHYeckoe ONMucaHue
JIBIDKEHHS POTOPA FMPOTEOI0IMTA, IJaHa MAaTEMATHYECKask MOJIE]Ib METO/1a 1 0003HaUEHO JalbHElIIee Pa3BUTHE JAHHBIX HCCIIEI0BAHMUH.

KinoueBsle cj10Ba: TMPOTEOJOUT, a3UMYT, TUPOCKOI, MHEPLUAIBHBIM MOMEHT, AeMII(UPYIONINI MOMEHT, HANPABIISIOMINIT MOMEHT, MOMEHT
OT MPOYMX HEYUTEHHBIX CHJI MPOLIECCa.

Introduction. Nowadays the majority of the problems of identi-
fication of the parameters of orientation systems by the measurement
results are solved using the algorithms based on various numerical
methods. When developing a competitive numerical method one
needs to provide for a series of requirements which are due to the
features of the specific practical problem considered. When identify-
ing the gyrotheodolite equilibrium position it is of particular impor-
tance to meet the following requirements:

— providing the identification accuracy;

— the minimal amount of measurements;

— the algorithm performance;

— stability of the computational process;

— the algorithm simplicity;

— low interference susceptibility.

Fig. 1 — Gyrotheodolite model. Previous to developing a mathematical model of the method
proposed in this paper we consider the features of the mathematical description of the gyrotheodolite rotor motion.

A gyrotheodolite is commonly used for determining alienuths of directions on the Earth’s surface. By its con-
struction a gyrotheodolite is amgle gauge incorporating agyroscope, which is the part of the device responsible for
determining the direction of the true meridian, and a theodolite [1].

The problem of determining the azimuth arises in various applications, such as, for instance, navigation of aircrafts,
ships, submarines, during surveying, mine tunneling, etc. For solving this problem gyroscopic azimuth-orientation in-
struments are widely used, which have several advantages over the astronomical, magnetic and other methods, such as
the capability to operate in any season and at any time of the day, inside closed objects including indoor spaces [2].
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In the majority of the gyrotheodolite models available the sensitive element, which is directly involved in determin-
ing the true meridian plane, consists of a torsion suspended pendulous gyroscope with automated tracking systen

(fig. 1).

Gyrorotor 1 in casing 2 is suspended by a flexible tape called torsion 3. In order to reduce the uncertainty torque
caused by the torsion elastic torquergion bar spring tension) a tracking system or torsion support system is intro-
duced, which rotates the torsion upper end fixation unit following the motion of the sensitive element. The tracking sys-
tem is composed of mirror 4, error sensor 7, amplifier 6 and drive 5 connected to torsion upper end fixation unit 3 [2].

To simplify the explanation of the operation
principle of a torsion suspended two-degree-of-
freedom gyrotheodolite pendulum let us assume that
the gyrotheodolite is placed at the Equator ¢ig.
and the main gyroscope axis is horizontal and
aligned with the West-East direction at the initial
moment of time, besides the kinetic momentum is di-
rected eastwards (position I, f@). In this case the
sensitive element gravity center is in the vertical
plane and, hence, does not generate a moment
about the gyromotor axis. Due to the daily rotation
of the Earth the horizon plane as well as the direc-
tion of the local vertical changes its location with
respect to the inertial space continuously. At the

Fig. 2 — Gyrotheodolite operation principle. same time the direction of the
gyrorotor axis stays unchanged in the inertial space, since no momentum is applied to the gyroscope in posiion I, fig.
Hence, the main axis deviates from the local horizon plane (position R)figesides the gyroscope rotates about the

point at which it is attached to the torsion. The gravitational moment generated thégeby(3, where S is the an-

gle of deviation of the gyroscope main axis from the meridian plane (position I, fig. 2), induces the gyroscope preces-

sion in the direction which takes the kinetic moméhtto get aligned with the meridian plane (position IV, f1§).

In order for the gyroscope main axis to keep its northwards direction after being aligned with the meridian plane it
needs to rotate with the same angular velocity as the
meridian plane, i.e.ak sing at the latitude ¢,

where ax is the angular velocity of the Earth.
Thus at the deviation by angle, (or f,)

the gyro compass executes undamped oscillat

about its equilibrium position, which lies in the

meridian plane, moreover the trajectory of the gy-
() roscope axis is an ellipse which semi-major axis
is in the horizon plane and semi-minor axis is in
the vertical plane. As a rule the ratm, ., / fmax
reaches 200- 50C and the oscillation period is

tens of minutes. Since the vertical component of
the angular velocity of the Earth at the Equator is

zero: ¢ =0°, wy =asing =0, the middle posi-

tion of the oscillations of the gyroscope in tijfe

angle (fig.3) lies in the horizon plane. At arbi-
_ _ o _ trary latitude the trajectory (figh) of the gyro-
Fig. 3 — Gyrotheodolite main axis precession scheme. scope axis is also an ellipse with center shifted up

by A" (for northern latitude).

Thus the gravitational moment needs to give rise to gyroscope precession in azimuth with the velocity

Wy =k Sing relative to the inertial space:

M . Pg"-
Wy =?p or a)Esm¢=Tﬁ, (1)
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hence, ,B'j:%wE sing . (2)

At the deviation of the main axis from the horizon plane the angle velocity of the gyroscope precession is the same
as the velocity of the meridian plane rotation. Nevertheless, there occur the oscillations of the gyroscope main axis rela-
tive to the meridian plane, which origins are considered below.

AL _ As;umg that at the initial moment of time the gyroscope
B main axis is in the horizon plane at the Equator and it is devi-
ated from the meridian plane by the angtg (point 1 in

fig. 3). Since at this position the ang/@=0 and the pendu-
losity M, =0, the gyroscope acts as a free gyroscope, i.e. the
- positive end of its main axis falls relative to the horizon plane

due to the Earth’s rotation. The deviation of the gyroscope
main axis by the anglgs from the horizon plane results in

the gyroscope precession in the direction of alignment of the
main axis with the meridian plane due to the pendulosity
Fig. 4 — Trajectory of gyroscope axis at arbitrary latitude. M, = P(f3 (point 3 in fig.3).

In the position corresponding to point 3 (fi.the angle of deviation of the gyroscope from the horizon plane

reaches its maximum modulo and the velocity of the gyroscope is zero, hence, it passes this position.
On segment 3 — 5 (fi@) the horizon plane rotates towards the gyroscope main axis. Thus thefangereases

which results in the decreasing pendulosity, ; the eastward precession of the gyroscope main axis slows down and at

point 5 (fig.3) the precession angle velocity becomes zero, the gyroscope deviation from the meridian plane reaches its
maximum. Further on the rotation of the horizon plane causes the rise of the gyroscope main axis above the horizon
plane, the anglgs increases thus bringing about the gyroscope precession. The pendulosity is now of the opposite sign

which again results in gyroscope precession relative to meridian plane (segment 5 3) 6Afigoint 6 (fig.3) the de-
viation of the gyroscope main axis form the horizon plane reaches its maximum one more time, thus the gyroscope
moves westwards with the maximal speed, hence, its main axis passes the meridian plane.

On segment 6 — 1 (fi®) the horizon plane moves towards the gyroscope main axis, hence, theBaagkt the

pendulosity M, gradually decrease, the gyroscope precession slows down and its angular velocity becomes zero at

point 1 (fig.3) [3].

In the absence of the momenta other than pendulosity the trajectory of the gyroscope axis is an ellipse. In reality,
since the presence of the momenta (such as suspension friction moment, torsion bar spring tension moment, etc.) is in-
evitable, the oscillations of the gyroscope axis decay in time, nevertheless the decay process lasts for quite a long time.
That is why the computational algorithms for quick identification of the true meridian are required, which allow for solv-
ing the problem with the given accuracy and in short time at the maximal volume of measurements of te angle

The motion of the gyrotheodolite main axis is approximately described by the following equation [4]:

Ad +Dd + HU cosg sing =M 3)
where Ad is the inertia momentD¢d is the damping momentiU cosg sing is the meridian alignment momen

stands for the moment resulting from other unaccounted fotces;the gyrotheodolite velocity.

Equation (3) can be considered as a particular caaeaftomatic control system (ACS).

The problem of identification of system parameters by the output signal measurement results is one of the relevant
identification problems, which in the case of equation (1) consists in identifying the true meridian or the atgle
librium.

In those cases when in the process of problem solving the volume of the stored information and processing time are
strictly regulated applying the classical methods (such as, for instance, Kalman filter, etc.) can't be justified. Then the fi-
nite-step method proposed in this paper can be successfully applied, which provides a solution after a finite predeter-
mined number of computations without any iterative procedure involved. At the same time the solution obtained by this
method is mathematically exact.

We need to mention here that the algorithm proposed provides a solution to the identification problem for a real
ACS with the given accuracy in the case when its mathematical model slightly differs from the real one.

Problem setting. Main and secondary problems. The solution to equation (1) and those which are similar to it
can be given by the sum of a const&tanddecaying sinusoids as follows:
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a(t)= R+§:A{<Rﬁkt sin(awt +¢y ), (4)
k=1

where S, can be either positive or zero [4].

Since in the case of gyrotheodolite and some ACS'’s the constant is the main object to be identified, the problem of
computing R with high accuracy in limited time is referred totas main problem below. Therthe secondary problem
consists in identifying the parametefs, 5., ., ¥, . The algorithm presented in the paper provides for solving both

of these problems. Nevertheless, the main focus is on the substantiation of the main problem with outlining the ways for
solving the secondary one. Let us hame the method presbateethod of equidistant points.

Mathematical model. Method of equidistant points. Solving the main problem, i.e. the problem of identifying
the constantR in (4), requires sufficient numbe¥, of measurementa( ) The numberN,; depends on the quantity

of the unknown parameters in (4) which need to be identified. We assume that the measurements are taken at regular ir
tervals of time, then

t; =to+jat, (j=0,1,2,..n), (5)
wheret, andt; denote the moments of the initial and current measureménts; the given step of measurements;

is the measurement number.
Let us choose a conditional midpoint on the measurement time intervatfrton, :

ty +t
2
where p=2p’ < N;. The specific values ofp’ and N, are determined below.
In what follows we operate with the valugsandt,_; symmetric with respect to the midpoint.
From (5) and (6) it follows that:

t. =

=ty + p'At, (6)

- p-j . —
=Pt =2 -

that is why the method of solving the main problem given below is called the method of equidistant points:

t,-; andt; are distanced equally frort, .

Assuming that the measuremem(t) can be given analytically by (4) we write down the differences and sums of
measurements for equidistant points:

N —_ .
poj =0 =0y = Ty(piog) = R AE Ao Sin(‘“ktp—j +¢’k) R- Z'Ak Cht sm(cq(t +4”k)
k=1
N
= Al X sin(@t,  +a ) -e ™ sin(ag; +u) | @)
k=1

Tp-j A} = pa(p-j) FTp~(p-j) = 2R+kzi‘1p‘;[e_ﬁktp_j sin(caty-, +‘/’k)+e_ﬁktj sin(aad, +‘/’k)]' ®)
The dependence df andt,_; onthe midpoin_ltc is given by:
t, =t + jAt =ty + p'At—(p' = j)At =t. —(p' - j)At
th-j =to+(P=j)At =ty + p'At+(p' - j)At =t +(p - j)At. 9)
We transform the expression in square brackets in (7) tiriguler formulae:

g Ao sin(cq(tp_j +(,//k)—e_’/]ktj sin(cq(tj +¢/k) =exp[ ~Bt. B (0 = i) At ]sin[ et + @ (p' - ) D+ |-
_eXp[_:Bktc + B ( p'- j)At}sin[a&tc -k ( p'- j)At "'élfk] = eXp[‘,Bktc - b ( [ j)At]x

X{exp[(qtc+q( - j)at+y) ] ex;{ ate +a (p —j)At+(//k)(—i)]}?li— exp-Bt. + B (p' - j)At].

{eXpl:(a&tc‘a&(p"j)At+‘//k)iJ_eXp[(“4<tc‘( iat+y)(- )J}
=exp| ~Ade +i (@t + i }B'n[ P =) At (@ +iB) ]+ exp[ At —i (wt. —¢i) |Bin[ (' - ) At (e —i5) ] =
a sin[ % (p- ] Atj+aksm[ p'-j)at], (10)
where a, = exp| At +i(adte + ¢ ]: =exp| Ao —i(@de +¥i) |3 X =@ +iB % =~ pis the num-
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ber of the measurement corresponding to the conditional midpoint.

]

Apparently the coefficientsy, a;, X, X are independent of the numbg¢rand, hence, are the same for any equi-
distant pointsa,_; anda; (j=1,2,.).

By analogy transform the expression in the square brackets in (8):

e e Bin(cq(tp_j +(,//k)+e_ﬁktj E'l;in(cq(tj +(//k) = by cog X (p' - j) At ]+by cod x (p' - j)At], (11)
whereb, =-ia,, b =ia".

In the case of zero coefficiengs, =0 (10) and (11) are simplified to become:

sin(@ty ;) -sin{at, +0) = 2008t +5) sirfa (p'- 1)) = afsing (p' - ) ; (12)
sin(cq(tp_j +¢/k) +sin(a,]<tj +<,1/k) =2sin(qt, +¢, ) cogy (p' = j) At =by cosx; (p' = j)At, (13)
where = 2coat, +¢ ), B = 2sin(at, +4). (a)° +(50) =4, X =@

Clearly, the coefficientsy, by, X, do not depend on the number in this case as well.

Comparing (10) and (12) we conclude that in the both c#ses0 and 5, =0 these expressions are of the same
type with the only difference that fof, #0 we have two summands of the forap sinx, ( p' - j)At and for 5, =0
only one such summand, wheag and x, are unknown valuesa( =a,, a Or & ; X, = X, X Or X ).

Similarly, (11) and (13) are of the same folyncosx, ( p - j)At with the unknownb, and x, , moreover, the co-

efficients b, can be written in terms dd, . By the above argument, substituting (10) and (11) in (7) and (8) we get:

N N
Onm=ay—a; =Y Asinx (p'=j)At; ny=a,;+a; =2R+) B, cosx (p'-j)At, (14)
k=1 k=1

where A = Aa,, B = Al = (A).
Form (8) and (10) it follows that for each summand of the f@q’m’ﬁktc sin(cq<tC +(//k) there are two correspond-
ing summands of the formﬁksinxk(p'—j)At in the first formula of (14) and two summands of the form

By cosxk(p'— j)At in the second formula of (14). Thus each decaying sinusoid is reduced to two complex sinusoids
(cosinusoids) with complex amplitudes. From (12) and (13) we have that for each summand of the form
A sin(cq<tC +¢/k) there is one corresponding summand in (14).

Hence, in (14) the numbed depends on the expected measurement composition and equals:

N =2n+n,, (15)

where n, is the number of the decaying sinusoids,is the number of the sinusoids that do not decay in formula (4),
which is given a priory.

Consequently, formulae (14) derived above con@iih+1 unknowns:R, A, X, all of which are independent of

the measurement number.
To simplify the further argument we introduce the following notations:

Ax =x A, p'—=i=m, (16)
then the differences and sums of measurements are reduces to the form:
N N
On EQyem = Ayom = 2 ASIN(AX [N) ;1) = Ay — Ay = 2R+ D" By cog Ax, ) (17)
k=1 k=1

with the coefficientsA, , B, introduced in (14).

In what follows we omit the prime symbol from the notatioag and x, keeping in mind that these coefficients
are the same as given by (19) depending on the valy .of

Thus we arrive at:

N
O E Qe = Ao = D, Acsin(Ax, [in); (18)
k=1
N
M = 0 yam + Ay = 2R+ By cogAx ) , (19)
k=1

where the unknown®R, A, and Ax, do not depend on the measurement numBgrcan be written in terms of,
(see formulae (14)).
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To identify the unknowns let us consequentially set1, 2, 3,...,N + 2in (18) and write down the following sys-
tem of equation:

5m=iA(sin(Axk ) (m=12,3,..N+ ), (20)
k=1

where A, are the coefficients to be identified.

A non-trivial solution A, exists if the following determinant equals zero [2]:

Inn SIN[(N+DDx ] sif(N+JAx, |
On sin(NAx, ) sin(NAxy )
Dy =] =, (21)
o, sin( 24 ) sin( 2y )
) sinfAx SinAxy
which can be reduced to the form:
oMy YN
oSN yNt YN
D(N) _ . ¢ siesanees . _ O ’ (22)
PNy i
JéN) yl .......... yN
N1 1

where y, =cosAx,, and Jr(nN) is given by the formula:

3 =25 (m=1,2,..0;0=23,..N),
which is derived by transformin®, as shown below.

We apply the following transformations to the determin@pigiven by (21) [5].

We first subtract its third row from the first one, the forth row from the second one, and so on, i.e. we subtract the
(n+2) —th row of the determinant from its —th row; the last row but one is kept unchanged and the last one is multi-
plied by 2.

Then in then —th row of the determinant we get:

sin(N + 2-n)Ax, = si(N + 2-n— 3Ax, = 2cobN —n+ )JiAx, O sifx, .

We reduce each column sinAx, (assuming thaf\x, # 0, krr).

Thus,

5&111 COoSNAX . CONAXy

s cog(N-JAx .. cofN - JiAx,

where Y =5, -3, , (m=3,4,..N+1, o =5,, 6 =24,
Next we add successively the first row of the determinant with its third row, the second row with the forth row, and
so0 on up to the sum of tHeN —1) - st and(N +1) - st rows; whereby we get in the-th row:

cog(N + 1-n)Ax, + cogN + tn- PAx = 2cdN-n)Ax, cos,.
Multiplying the N —th and(N +1) - st rows by 2 we then reduce each row of the determinant by 2:
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where y, =cosax, (k=1,2,...N); &2 = o +o, (m=3,4,..,N+1; ol =28, 51 = 2808,
Summing the determinant rows as above up to the sum ((hoeZ)— nd and N —th rows and multiplying the

rows with numberaN , N -1 and N +1 by 2, after reducing all the columns by 2 we arrive at the following equation:

5@1 Vi co{(N— 3Ax1:| YA coE(N— )ZAXN]
58 yocog (N-3Ax] .. y5 cop(N- Raxy |

p{® =| o2 Y2 v3 =0,
o y2 v
5§3) Y1 YN

ISR

©
=
=

wheredd =52 + 5, (m=4,5..,N+1; 33 = 24(2 (m=1,273.

m

By repeating the procedure we get:

W W

Y Y
Dl(N)=;3{NIS ....... y12 ....... ...... yﬁ 0 23)

5£N) Y1 YN

M1 1

where

a‘r(n‘) :a‘rgf'l) +5r(]f__21) (m=r+1, .. ,N+19; (24)
o) =20"Y (m=1,2,...0;0=23,.N), (25)

with y, =cosAx,, and Jr(nN) given by formulae (24), (25).
Expanding determinant (23) by the elements of its first column and dividing the equation obtained by the cofactors
of the elementa',(“'\i)l we have:
N
N N
Z zidl(\H)l—i = _51(\l+)1' (26)

i=1
where

2 =(-1) B (i=1.2,3,..N), 27)

1

and the determinant®;,, (i =0,1,2,3,...N) are derived by deleting théi +1) - st row from the table:

Bicnux Hayionanvnoeo mexwiunozco ynisepcumemy «XI11». Cepia:. Mamemamuyne
102 Molemosanist 6 mexriyi ma mexuonoeisx, Ne 1 (1355) 2020.



ISSN 2222-0631 (print)

V. YN

it ya

......................... ) (28)
VR Yy
1 ... 1

The determinanD; obtained from table (28) by deleting its first row is in fact the Vandermonde determinant and
can be computed by the formula [2]:

Dy = (¥1=¥2) (Y2 ¥a) - (Yam I ) (Y2 = ¥a) (Y1~ W) (29)
The determinanD, does not vanish if
Ve Y for kzm (k,m=1,2,..,N). (30)

Hence, if condition (30) holds then system (20) is reduces to a single linear equationN2@nknownsz .
By analogy one reduces the system of equations obtained from (18) égual to0, 1, 2,....N :

qm:2R+incos(Axk ) (m=0,1,2,..N), (31)
where the coefficient®, are unknown. A nko;-trivial solutioB, exists if the following determinant is zero:
Ny —2R cofNAX) ...  cofNAxy)
Mn-1—2R cod (N=3Ax | ... cos(N~- Jiaxy |
D [ =
n, - 2R coy 2\x,) cob 2xy )
m—-2R CosAX COAXy
N, -2R 1 1
Arguing as above, the determinaDj can be reduced to the form:
AN _NR YN N
AN -2NR NN
DIV ={ e, = (32)
" -2"R oy Y
AN -NR 1 1
where
D =Y gl (m=, 041, N); b =20 (m=1,2,...0 ;0= 2,3,..N). (33)
We expand determinant (32) following the same procedure as for determinant (22) above to get:
>z (U(N_i -2" R) = —(U(NN) -2" R) : (34)
i=1

where z are given by (27).

Introducing the notationg, = 6#,“1)14; Q =/7(,\]N_)i for simplifying the representation, we reduce equations (26) and
(34) to the form:
N N N N
> 76 =4y >.z(Q-2"R)=-(Q,-2"R). (35)
i=1 i=1
Thus constructing the linear combinations of differences (18) and sums (19) of measurements at equidistant points
by formulae (25) and (33) we arrive at system of equations (35Y inl unknowns, namelyN unknown values of;
and the unknown constafR. This transformation has place if inequality (30) holds, which siyce cosAx, (where

Ax, = x Ot , x = +i8,) can be written as followscosx At 2 cox, At (k#zm, k=1,2,...N, m=12,..N)or,
otherwise:
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X £ Xm
that is the analytical form of measurements (4) does not contain same frequency sinusoids and the measur&ment step
must satisfy inequality (36).
In order to determine all the unknownhl (values ofz and the constanR) from system (35) it needs to be ex-

At #

X EXn (M=0,1,2,..;kzm;k=1,2,..N), (36)

panded to contailN +1 equation. This can be done by using equation (86}times, shifting the conditional midpoint
by one stepAt to the right each next time, i.e.:

N
> z¢s=-¢ys (5=0,1,2,..N- ],
i=1

where g, o =@, @0 =@o from (35); 4 s = Onsroiss, Pos = 5#1’\1)1+s’ Jr(nN) are given by (25)z is given by (27).
Hence, the expanded system of equations for identifilingnknownsz and R is written in the form:
N N N N
> 26.s=-¢os (5=0.1,2,..N- }; Y z(Q-2"R)=-(Q-2"R). (37)
i=1 i=1
All the valuesz can be found from the firsN equations of system (37) in case the system determinant is non-
zero:
o P20 - Pno

D= ¢1,1 ¢2,1 ¢N,1 20, (38)

¢1,N—1 ¢2,N—1 ¢N

which has place for the actual measurements.
Then from the last equation of (37) we fif:
N

220 +Q
R= '=1N— . (39)
*[Ea
i=1
This concludes the solution of the main problem of the method of equidistant points.
Apparently, to solve the main problem by formulae (37), (38) one needs the measume(m)etaken at3N + 2
points, whereN =2n, +n, according to (15), i.e. the number of measurements needs to be greater than the number of

the unknowns in the measurement analytical formula (4).
The sufficient number of measurementsNg =3N + 2, and the measurement corresponding to the conditional

midpoint satisfiesp’'= N + 2.
The solution to the secondary problem can be derived by deternmniingm (37) and subsequent computation of

y; (1=1,2,3,...N), which are in fact the roots of the equation:

N .
yN (1) zy =0 4]
i=1
The values ofy; being determined we then finfix; = x;At and can computg, and ¢, by formulae (10). We

also note thatA, and B, can be identified form (20) and (31), and their values can then be used to compute the ampli-
tudes A, and phaseg, of the sinusoids in (4). Since this problem is not in the focus of the present paper we limit our-
selves here to just outlining the ways of it's solving.

Prospects of further research. The further development of the methods of identification of system parameters
comprises:
— development of the algorithms for solving the main problem in the case when the process is given in the form:

N
a=R+> A (t)e A sin(wt+y, ),
k=1
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where A, (t) is the polynomial corresponding to the multiple roots of the differential equation considered;

— development of the efficient methods for solving the secondary problem;

— improvement of the algorithms aimed at reducing the number of the measurements required;

— construction of the error correction algorithms providing the improvement in accuracy while reducing the infor-
mation retrieval time.

Studying these points provides a sufficient solution for a wide range of practical problems.

Conclusions. In this paper a mathematical substantiation emthputational formulae of an innovative finite-step
computational method are presented. The algorithm developed is efficient for solving both main and secondary prob-
lems. When solving such problems for specific systems their respective features need to be taken into account, which es
sentially improves the accuracy of the results as well as the processing time. The results and computational formulae
proposed can be used for solving similar problems of identification of various automatic control systems.
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VJIK 519.6
€.J1. XYPIEH
TEOPISI IOBY1OBU ONEPATOPIB IHTEPIOJISILIT I3 3ATAHUMU IMMPOEKLIAMU

Oneparopu anpokcumaltii GyHKINi ABOX 3MiHHHUX, IO {HTEPIIOMIOIOTH ii CBOIMU MPOEKLisAMU M0 M HemapaneabHUX NPSIMUX, HEAOCTATHBO JOCTIHKY-
BaJIMCS B HAYKOBIl JliTepaTypi. Y Toif xe yac 11 TeopeTHdHa npobiieMa BUKIIMKAE MPAKTHYHUIT iHTEpeC, KOJIM JaHi NpoeKwiil (IHTerpanu B3I0BXK Ji-
HI)BUXOIATH i3 KOMIAKTHOTO CKaHepa Tomorpadii. Y po6oTi moOyaoBaHHil OrepaTop iHTEprosLlii, K1l TOYHO BiJHOBIFOE TOJIHOMH CTETCHSI
M —1. Metox nociimKyBaBcs Ul BUMAJAKy CUCTEMU B3aEMHO MEPHEHIMKYIIPHUX MPAMUX Ta UL TPhOX HemapaieIbHUX NMePEeTUHHUX NMpsMuX (cTo-
piH TPUKYTHHKA). 3HANACHO iHTErpabHE MPEACTABICHHS 3IMIIKOBOrO YlieHa HaOMmKeHHs AudepeHIiiHoBHUX (YHKILI OTPMMaHUMK OMEPaTOpaMH.
3anponoHOBaHMIT METOJL I03BOJISIE POSLIMPUTH TEOPIO Ta IIPAKTHYHE 3aCTOCYBaHHS KOMIT I0TEpHOI ToMorpadii.

KumiouoBi c;10Ba: komir’totepHa TomMorpadisi, OriepaTtopy iHTEprosLii 3 BiJOMUMHU MPOEKLSIMH, 3aJIMIIOK HAOJIMKEHHS, apOKCHMALlisl, IPOeK-
Liii B3I0BX JIHIH.

E.J1. XYPJEH
TEOPUSA MOCTPOEHUS OMEPATOPOB UHTEPIOJISILMU C 3AJAHBIMU IMPOEKLIUSIMU

OniepaTops! anmnpokcuManiy GYHKIMY ABYX MEPEMEHHEIX, KOTOPBIE MHTEPIOIMPYIOT €6 CBOMMHM IPOSKLUMAMHU 110 M HemapaulebHBIX MPSMBIX, He-
JIOCTATOYHO UCCIIENOBATUCH B HAYYHOI UTepaType. B To e Bpems 5Ta TeopeTuueckas npoOiemMa BbI3bIBAET IPAKTUUECKUI UHTEPEC, KOTJa JaHHbIE
NPOEKIMK (MHTErpaibl BIOJIb JIMHUIA) BHIXOIAT U3 KOMITAKTHOTO cKaHepa ToMorpaduu. B pabote ocTpoeH onepaTop MHTEPOJISALMY, KOTOPbIH TOYHO
BOCCTAaHABJIMBACT MONMHOM cTeneHn M —1. Metox mccnenoBaics At ciydas CHCTEMbl B3aUMHO MEPHEHAMKYIIAPHBIX NPSMBIX U JUTA TpeX Hemapa-
JIENBHBIX MEPECEKAIOIXCS NPSIMBIX (CTOPOH TpeyrojibHuKa). HaliieHo MHTerpaibHOe HpeICTaBIeHHE OCTaTOYHOTO YieHa NpUOmmKeHus tuddepeH-
LUPYEeMbIX (DYHKIUI TOTy4eHHBIMHU oniepaTopaMu. [1peano)keHHbI METO/ TTO3BOIISIET PACIIMPHTH TEOPHIO U MPAKTUYECKOE MPHIMEHEHHE KOMIBIOTEP-
HOI1 ToMorpauu.

Ki1i0ueBble ¢10Ba: KOMIbIOTEpHAs ToMOrpadus, onepaTopbl HHTEPIOSLHIN ¢ U3BECTHBIMU NPOECKLMAMHU, OCTATOK MPUOJIIKEHUS, allpOKCHU-
Marys, MPOEKIMH BIOJb TMHUMH.
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